The Dornbusch-Fischer-Samuelson Model

Motoaki Takahashi

Recent Advances in International Trade at the University of Mainz

April 26, 2024

Outline

- The world consists of two countries: home (H) and foreign (F).
- Both countries can produce many goods (a unit continuum of goods).
 - But, whether they actually produce all goods in a continuum is a different problem.
 - In equilibrium, they do not.
- Each country has different productivity in producing a good.
- The world economy is perfectly competitive.
 - No externality, no tax, no friction, no distortion.
- How is the pattern of international trade and payment determined in such an economy?

Production

- ► Goods are distributed over [0, 1].
- The only production factor is labor.
- For z ∈ [0, 1], the unit labor requirements in H and F are a(z) and a^{*}(z), respectively.
- Unit labor requirement: how much labor is required to produce one unit of a good.
 - Three people are needed to produce a desk,
 - 123.45 work hours are needed to produced a software.
- For any good z, define relative unit labor requirement A(z) by

$$A(z)=rac{a^*(z)}{a(z)}.$$

- By reordering indices for goods, without loss of generality, we can assume that A(·) is weakly decreasing.
- We further assume that $A(\cdot)$ is strictly decreasing and continuous.

Free Trade and the Cutoff Good (1)

- Assume free trade; no cost is incurred to ship a good from one country to the other.
- Let the wage rates in H and F be w and w^* , respectively.
 - These wage rates can be measured in any common unit.
 - For example, good 0, good $\sqrt{2}/2$, labor in H or F.
- ► For any z ∈ [0, 1], consumers in both countries purchase good z from the country serving it at a lower price.
- Producers in both countries sell goods at their marginal costs.

Free Trade and the Cutoff Good (2)

- Define relative wage ω by $\omega = \frac{w}{w^*}$.
- ► *H* produces good *z* if

$$a(z)w \leq a^*(z)w^* \iff \omega \leq A(z).$$

F produces good z if

$$a^*(z)w^* \leq a(z)w \iff A(z) \leq \omega.$$

• Suppose that $A(0) \ge \omega \ge A(1)$.

• Later we will verify this. That is, in equilibrium, $A(0) \ge \omega \ge A(1)$ does hold.

Then, since A(·) is continuous and strictly decreasing, given ω, there exists one and only one element in [0, 1], ž, such that

$$\omega = A(\tilde{z}). \tag{1}$$

Since A(·) is strictly decreasing and therefore invertible, we can define cutoff good ž as a function of ω

$$\tilde{z}(\omega) = A^{-1}(\omega)$$

Free Trade and the Cutoff Good (3)

Note that H produces goods $z \in [0, \tilde{z}(\omega)]$ and that F produces goods $z \in [\tilde{z}(\omega), 1]$.

Consumers' Demands (1)

• We move on to the consumers' side.

Consumers in both countries have the identical Cobb-Douglas utility function¹

$$U = \int_0^1 b(z) \cdot \log(C(z)) dz, \qquad (2)$$

where

• b(z) > 0 is the parameter of the expenditure share on good z and satisfies

$$\int_0^1 b(z)dz = 1,$$

• C(z) is the consumption of good z.

¹Here we are omitting the subscripts (or superscripts) for countries.

Consumers' Demands (2)

Consumers maximize (2) subject to the budget constraint

$$\int_0^1 P(z)C(z)dz \leq Y,$$

where

- \triangleright P(z) is the price of good z,
- > Y is the income or total expenditure.

Solving this utility maximization problem, the demand function satisfies

$$b(z)=\frac{P(z)C(z)}{Y}.$$

▶ The expenditure share on the goods produced in H, $\vartheta(\tilde{z})$, is

$$\vartheta(\tilde{z}) = \int_0^{\tilde{z}} b(z) dz \ge 0. \tag{3}$$

By the fundamental theorem of calculus,

$$\vartheta'(\tilde{z}) = b(\tilde{z}) > 0.$$

Labor Market Clearing

or Trade Balance

- ▶ Both *H* and *F* spend the share $\vartheta(\tilde{z})$ on the goods produced in *H*.
- ▶ The incomes of H and F are wL and w^*L^* , respectively.
- > Then how much H earns must be equal to how much the whole world pays to H

$$wL = \vartheta(\tilde{z})(wL + w^*L^*).$$

• Solving this for ω , we obtain

$$\omega = \frac{\vartheta(\tilde{z})}{1 - \vartheta(\tilde{z})} \cdot \frac{L^*}{L} = B(\tilde{z}; L^*/L).$$
(4)

 ${}^2 \tilde{z} \uparrow 1$ means that \tilde{z} approaches one from below.

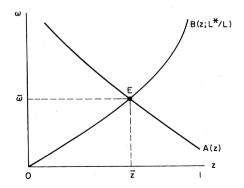
General Equilibrium

Two equations (1) and (4) jointly determine the equilibrium cutoff good z and relative wage w:

$$\bar{\omega} = A(\bar{z}) = B(\bar{z}; L^*/L).$$

This closes the model.

▶ The equilibrium $(\bar{z}, \bar{\omega})$ is illustrated as point *E* below.



Showing $A(0) > \bar{\omega} > A(1)$: (1)

- ▶ In p.5, we conjectured that $A(0) \ge \bar{\omega} \ge A(1)$ in equilibrium.
- ▶ This holds. More strongly, $A(0) > \bar{\omega} > A(1)$ holds.
- For any $z \in [0, 1]$, define function $F(z; L^*/L)$ by

$$F(z; L^*/L) = A(z) - B(z; L^*/L).$$

- Since $A(\cdot)$ and $B(\cdot; L^*/L)$ are continuous, $F(\cdot; L^*/L)$ is continuous.
- Since A(·) is strictly decreasing and B(·; L*/L) is strictly increasing, F(·; L*/L) is strictly decreasing.

Showing $A(0) > \bar{\omega} > A(1)$: (2)

Note that

$$F(0; L^*/L) = A(0) - B(0; L^*/L) = A(0) - 0 = A(0) > 0$$

$$\lim_{z \uparrow 1} F(z; L^*/L) = \lim_{z \uparrow 1} \left[A(z) - B(z; L^*/L) \right] = A(1) - \lim_{z \uparrow 1} B(z; L^*/L) = -\infty.$$

Since F(·; L*/L) is continuous and strictly decreasing, there exists one and only one z̄ ∈ (0, 1) such that F(z̄; L*/L) = 0.

▶ For such $\bar{z} \in (0,1)$, we define $\bar{\omega}$ by

$$\bar{\omega} = A(\bar{z}) = B(\bar{z}; L^*/L).$$

► Since A(·) is strictly decreasing,

$$A(0)>ar{\omega}>A(1).$$