The Eaton-Kortum Model

Motoaki Takahashi

Recent Advances in International Trade at the University of Mainz

May 23, 2024

Motivation

- ▶ So far, we have mainly studied models of two-country settings.
	- ▶ Home vs Foreign.
- \triangleright But, the actual world economy consists of many countries.
	- \blacktriangleright Germany, France, Switzerland, USA, China, \cdots .
- ▶ Can we solve an equilibrium for a model of many countries?
	- \blacktriangleright With only paper and a pencil, no.
	- \blacktriangleright With a computer, yes.
- ▶ The Eaton-Kortum model is a static quantitaive many-country model of international trade.
	- ▶ "Quantitaive" means you can compute numerical solutions of equilibria.
	- ▶ Therefore, you can get a number of a welfare change induced by a change in productivity/trade costs/populations.
- \triangleright An advantage is that gains from trade are expressed as widely available trade values and one key parameter: trade elasticity.

Observation: Bilateral trade

 X_{ni} : the (manufacturing) trade value from country *i* to country *n* (as of 1986)

- \blacktriangleright The further two countries are, the less they trade.
- ▶ Controlling for population sizes and geographic locations, large exporters tend to be rich.
	- ▶ In 1986, they were USA, Japan, and West Germany.
	- ▶ This "competitiveness" will be represented as parameters of productivity.
- ▶ In the Ricardian tradition of one-factor models, being rich means earning high real wages.

Setup

- \blacktriangleright There are N countries: $i, n = 1, \dots, N$.
- ▶ There is a unit continuum of varieties $j \in [0, 1]$.
- \triangleright Consumers in country *i* have the following utility function

$$
U_i = \left[\int_0^1 Q_i(j)^{(\sigma - 1)/\sigma} dj \right]^{\sigma/(\sigma - 1)}
$$

.

 \triangleright σ : the parameter of the elasticity of substitution, $\sigma > 0$.

CES price index (1)

- \blacktriangleright Let $p_i(i)$ be the price of variety *i* in country *i*.
- \triangleright We solve the following expenditure minimization problem

$$
\min \int_0^1 p_i(j) Q_i(j) d j \tag{1}
$$

subject to

$$
\left[\int_0^1 Q_i(j)^{(\sigma-1)/\sigma}dj\right]^{\sigma/(\sigma-1)}\geq 1.
$$

 \blacktriangleright That is, you want to minimize total expenditure given that you must enjoy one unit of utility.

CES price index (2)

- \triangleright We solve this problem with the Lagrangian multiplier method.
- \blacktriangleright Let L be the Lagrangian and λ be its multiplier. Then,

$$
L=\int_0^1p_i(j)Q_i(j)dj+\lambda\left(1-\left[\int_0^1Q_i(j)^{(\sigma-1)/\sigma}dj\right]^{\sigma/(\sigma-1)}\right).
$$

 \blacktriangleright The first-order conditions are

$$
\frac{\partial L}{\partial Q_i(j)} = p_i(j) - \lambda \frac{\sigma}{\sigma - 1} \left[\int_0^1 Q_i(j)^{\frac{\sigma - 1}{\sigma}} dj \right]^{\frac{\sigma}{\sigma - 1} - 1} \cdot \frac{\sigma - 1}{\sigma} Q_i(j)^{\frac{\sigma - 1}{\sigma} - 1} = 0 \quad (2)
$$

for any $j \in [0, 1]$ and

$$
\frac{\partial L}{\partial \lambda} = 1 - \left[\int_0^1 Q_i(j)^{(\sigma - 1)/\sigma} dj \right]^{\sigma/(\sigma - 1)} = 0. \tag{3}
$$

CES price index (3)

$$
\blacktriangleright
$$
 Rewriting (2),

$$
p_i(j) = \lambda \left[\int_0^1 Q_i(j)^{(\sigma-1)/\sigma} dj \right]^{1/(\sigma-1)} Q_i(j)^{-\frac{1}{\sigma}}.
$$

In This holds for different varieties $j \neq j'$

$$
\frac{p_i(j')}{p_i(j)} = \frac{Q_i(j')^{-\frac{1}{\sigma}}}{Q_i(j)^{-\frac{1}{\sigma}}} = \frac{Q_i(j)^{\frac{1}{\sigma}}}{Q_i(j')^{\frac{1}{\sigma}}}.
$$

Rewriting this, we have

$$
Q_i(j)^{\frac{1}{\sigma}}p_i(j)p_i(j')^{-1}=Q_i(j')^{\frac{1}{\sigma}}.
$$

Raise both sides to the $\sigma - 1$ power,

$$
Q_i(j)^{\frac{\sigma-1}{\sigma}}p_i(j)^{\sigma-1}p_i(j')^{1-\sigma}=Q_i(j')^{\frac{\sigma-1}{\sigma}}.
$$

CES price index (4)

Integrate both sides with respect to j' (not j)

$$
Q_i(j)^{\frac{\sigma-1}{\sigma}}p_i(j)^{\sigma-1}\int_0^1p_i(j')^{1-\sigma}dj'=\int_0^1Q_i(j')^{\frac{\sigma-1}{\sigma}}dj'.
$$

Raise both sides to the $\frac{\sigma}{\sigma-1}$ power

$$
Q_i(j)p_i(j)^{\sigma} \left[\int_0^1 p_i(j')^{1-\sigma} dj' \right]^{\frac{\sigma}{\sigma-1}} = \underbrace{\left[\int_0^1 Q_i(j')^{\frac{\sigma-1}{\sigma}} dj' \right]^{\frac{\sigma}{\sigma-1}}}_{=1 \text{ because of (3)}}.
$$

 \blacktriangleright Therefore the optimal (expenditure minimizing) demand for variety *j* is

$$
Q_i(j) = p_i(j)^{-\sigma} \left[\int_0^1 p_i(j')^{1-\sigma} dj' \right]^{-\frac{\sigma}{\sigma-1}}.
$$
 (4)

CES price index (5)

 \blacktriangleright Inserting the optimal demand [\(4\)](#page-8-0) into the objective function [\(1\)](#page-5-0) yields

$$
\int_{0}^{1} p_{i}(j)Q_{i}(j)dj
$$
\n
$$
= \int_{0}^{1} p_{i}(j)^{1-\sigma} \left[\int_{0}^{1} p_{i}(j')^{1-\sigma}dj' \right]^{-\frac{\sigma}{\sigma-1}} dj
$$
\n
$$
= \left[\int_{0}^{1} p_{i}(j')^{1-\sigma}dj' \right]^{-\frac{\sigma}{\sigma-1}} \int_{0}^{1} p_{i}(j)^{1-\sigma} dj
$$
\n
$$
= \left[\int_{0}^{1} p_{i}(j')^{1-\sigma} dj' \right]^{-\frac{\sigma}{\sigma-1}+1}
$$
\n
$$
= \left[\int_{0}^{1} p_{i}(j')^{1-\sigma} dj' \right]^{-\frac{\sigma+(\sigma-1)}{\sigma-1}}
$$
\n
$$
= \left[\int_{0}^{1} p_{i}(j')^{1-\sigma} dj' \right]^{-\frac{1}{\sigma-\sigma}}.
$$

Costs given productivity

- ▶ We first discuss prices of varieties consumers face given producers' productivity.
- \blacktriangleright Within a country, many infinitisimal¹ and identical producers produce a variety $j \in [0, 1]$.
- ▶ These producers' production exhibits constant returns to scale.
- ▶ Therefore we can treat their behavior as behavior of a representative firm.
- \blacktriangleright The cost of a bundle of inputs in country *i* is c_i .
- \triangleright Productivity of variety *i* in country *i* is $z_i(i)$.
- \blacktriangleright The cost of producing a unit of variety *i* is, then, $c_i/z_i(j)$.

¹" Infinitesimal" means very small.

Iceberg trade costs and prices given productivity

- \triangleright You want to ship one unit of variety from country *i* to country *n*.
- During shipment, a part of your goods shipped is lost.
	- ▶ You send salt. A part of the salt is melted to the sea.
	- ▶ Pirates can steal your computers once in ten times.
- ▶ Since Paul Samuelson, this situation is expressed as iceberg trade costs.
- \triangleright Delivering one unit from country *i* to country *n* requires producing d_{ni} in *i*.
	- ▶ For example, if $d_{ni} = 1.05$, to deliver one unit of a variety to country *n*, you need to ship 1.05 units from country i.
	- \blacktriangleright In this case, 5 percent of the iceberg is melted down.
- ▶ For any three countries *i*, *k*, and *n*, $d_{ni} \n≤ d_{nk} d_{ki}$.
	- \blacktriangleright This is called the triangle inequality.
	- \blacktriangleright Trade through a third country costs more than direct trade.

Prices given productivity

 \triangleright Then, the price of a variety *i* produced in *i* and sold in *n* is

$$
p_{ni}(j) = \frac{c_i d_{ni}}{z_i(j)}.
$$

▶ Country *n* buys variety $j \in [0, 1]$ from the country that sells it at the lowest price. \blacktriangleright Therefore, country *n* actually pays for variety *i* is

$$
p_n(j) = \min\{p_{ni}(j); i = 1, \cdots, N\}.
$$
 (5)

Technology (1)

 \triangleright The productivity of variety *i* in country *i* is drawn from the country-specific (cumulative) probability distribution

$$
F_i(z) = e^{-T_i z^{-\theta}}.
$$
\n(6)

 \blacktriangleright $T_i > 0$ and $\theta > 0$.

- \triangleright Different varieties in country *i* draw productivity from the independent and identical distributions [\(6\)](#page-13-0).
- \triangleright Quick recap: For a real-valued random variable Z, the (cumulative) distribution function is $F(z) = Pr[Z \leq z]$.

If $F(\cdot)$ is differentiable, $f(z) = F'(z)$ is the probability density function.

 \blacktriangleright The probability distribution [\(6\)](#page-13-0) is the Fréchet distribution² with the location parameter T_i and the shape parameter θ .

 2 Or the type-II extreme value distribution.

Technology (2)

$$
F_i(z)=e^{-T_iz^{-\theta}}
$$

A bigger T_i implies that a high productivity draw for variety j is more likely. In this sense, T_i is often called country *i*'s (average) productivity level.³

 \blacktriangleright A bigger θ implies less variability.

 3 This governs the average, but is not the average itself.

From Technology to Prices

- \triangleright We assumed a probability distribution for productivity.
- \triangleright Let P_{ni} be the random variable that represents the price of a variety produced in i and sold in n .
- \blacktriangleright Then the distribution function for P_{ni} is

$$
G_{ni}(p) = Pr[P_{ni} \le p]
$$

= 1 - F_i(c_id_{ni}/p)
= 1 - e^{-[T_i(c_id_{ni})^{-θ}]p^θ}

.

 \triangleright But, according to [\(5\)](#page-12-0), what really matters for consumers in *n* is the distribution of

$$
P_n = \min\{P_{ni}; i = 1, \cdots, N\}.
$$

 \blacktriangleright Let $G_n(\cdot)$ denotes the distribution function of P_n .

▶ That is, $G_n(p) = Pr[P_n \leq p]$

Price distribution

$$
G_n(p) = Pr[Pn \le p]
$$

= Pr $\left[\min_{i=1,\dots,N} P_{ni} \le p\right]$
= 1 - Pr [p \le P_{n1} and p \le P_{n2} and ... and p \le P_{nN}]
= 1 - Pr[p \le P_{n1}] \cdot Pr[p \le P_{n2}] \cdot ... \cdot Pr[p \le P_{nN}]
= 1 - (1 - Pr[P_{n1} \le p]) \cdot (1 - Pr[P_{n2} \le p]) \cdot ... \cdot (1 - Pr[P_{nN} \le p])
= 1 - (1 - G_{n1}(p)) \cdot (1 - G_{n2}(p)) \cdot ... \cdot (1 - G_{nN}(p))
= 1 - e^{-[T_1(c_1d_{n1}) - \theta}]p^{\theta} \cdot e^{-[T_2(c_2d_{n2}) - \theta}]p^{\theta} \cdot ... \cdot e^{-[T_N(c_Nd_{nN}) - \theta}]p^{\theta}
= 1 - e^{-\Phi_n p^{\theta}},

where

$$
\Phi_n=\sum_{i=1}^N T_i(c_id_{ni})^{-\theta}.
$$

Trade shares (1)

 \blacktriangleright Let the set of all countries be $\mathcal{N} = \{1, 2, \cdots, N\}$.

 \blacktriangleright The probability that country *i* serves an infinitesimal variety to country *n* at the lowest price is⁴

$$
\pi_{ni} = Pr \left[P_{ni} \leq \min_{k \in \mathcal{N} \setminus \{i\}} P_{nk} \right]
$$

\n
$$
= \int_0^\infty Pr \left[\min_{k \in \mathcal{N} \setminus \{i\}} P_{nk} \geq p \right] dG_{ni}(p)
$$

\n
$$
= \int_0^\infty Pr[P_{nk} \geq p \text{ for all } k \in \mathcal{N} \setminus \{i\}] dG_{ni}(p)
$$

\n
$$
= \int_0^\infty \prod_{k \in \mathcal{N} \setminus \{i\}} Pr[P_{nk} \geq p] dG_{ni}(p)
$$

\n
$$
= \int_0^\infty \prod_{k \in \mathcal{N} \setminus \{i\}} (1 - G_{nk}(p)) dG_{ni}(p).
$$

⁴The following calculation follows Allen and Arkolakis' notes.

Trade shares (2)

 \blacktriangleright The probability density function of prices produced in country *i* and sold in *n* is

$$
g_{ni}(p)=\frac{dG_{ni}(p)}{dp}=e^{-T_i(c_id_{ni})^{-\theta}p^{\theta}}T_i(c_id_{ni})^{-\theta}tp^{\theta-1}.
$$

 \blacktriangleright Then, we have

$$
\pi_{ni} = \int_0^\infty \prod_{k \in \mathcal{N}\setminus\{i\}} (1 - G_{nk}(p)) dG_{ni}(p)
$$

\n
$$
= \int_0^\infty \prod_{k \in \mathcal{N}\setminus\{i\}} (1 - G_{nk}(p)) g_{ni}(p) dp
$$

\n
$$
= \int_0^\infty \left(\prod_{k \in \mathcal{N}\setminus\{i\}} e^{-\left[\mathcal{T}_k(c_k d_{nk})^{-\theta}\right] p^{\theta}} \right) e^{-\mathcal{T}_i(c_i d_{ni})^{-\theta} p^{\theta}} \mathcal{T}_i(c_i d_{ni})^{-\theta} dp^{\theta-1} dp
$$

Trade shares (3) [continued]

$$
\pi_{ni} = \int_0^\infty e^{-\Phi_n p^\theta} T_i (c_i d_{ni})^{-\theta} \theta p^{\theta-1} dp
$$

\n
$$
= \left(-\frac{T_i (c_i d_{ni})^{-\theta}}{\Phi_n} \right) \int_0^\infty \left(-\Phi_n \theta p^{\theta-1} e^{-\Phi_n p^\theta} \right) dp
$$

\n
$$
= \left(-\frac{T_i (c_i d_{ni})^{-\theta}}{\Phi_n} \right) \int_0^\infty (e^{-\Phi_n p^\theta})' dp
$$

\n
$$
= \left(-\frac{T_i (c_i d_{ni})^{-\theta}}{\Phi_n} \right) \left[e^{-\Phi_n p^\theta} \right]_0^\infty
$$

\n
$$
= \left(-\frac{T_i (c_i d_{ni})^{-\theta}}{\Phi_n} \right) (0 - 1)
$$

\n
$$
= \frac{T_i (c_i d_{ni})^{-\theta}}{\Phi_n} = \frac{T_i (c_i d_{ni})^{-\theta}}{\sum_{k=1}^N T_k (c_k d_{nk})^{-\theta}}.
$$

Price index (1)

 \blacktriangleright Remember that the price index in country *i* is

$$
p_i = \left[\int_0^1 p_i(j)^{1-\sigma}dj\right]^{\frac{1}{1-\sigma}}
$$

 \blacktriangleright Using the distribution function of prices in *i*, G_i , we rewrite this

$$
p_i^{1-\sigma} = \int_0^1 p_i(j)^{1-\sigma} dj
$$

=
$$
\int_0^\infty p^{1-\sigma} dG_i(p)
$$

=
$$
\int_0^\infty p^{1-\sigma} g_i(p) dp.
$$

Price index (2)

 \blacktriangleright The probability density function of prices in country *i* is

$$
g_i(p) = \frac{dG_i(p)}{dp} = e^{-\Phi_i p^\theta} \theta \Phi_i p^{\theta-1}.
$$

 \triangleright Using this, we further compute the price index

$$
p_i^{1-\sigma} = \int_0^\infty p^{1-\sigma} e^{-\Phi_i p^\theta} \theta \Phi_i p^{\theta-1} dp
$$

=
$$
\int_0^\infty \theta \Phi_i p^{\theta-\sigma} e^{-\Phi_i p^\theta} dp.
$$

Price index (3)

 \blacktriangleright We change the variable of integration from p to $x = \Phi_i p^{\theta}$.

$$
\begin{array}{c|c}\np & 0 & \rightarrow & \infty \\
\hline\nx & 0 & \rightarrow & \infty\n\end{array}
$$

▶ Other relevant information about this change of the integration variable:

$$
\frac{dx}{dp} = \theta \Phi_i p^{\theta - 1}.
$$

Therefore,

$$
dp = \frac{dx}{\theta \Phi_i p^{\theta - 1}}
$$

=
$$
\frac{dx}{\theta x p^{-1}}
$$

=
$$
\frac{dx}{\theta x \left(\frac{x}{\Phi_i}\right)^{-\frac{1}{\theta}}}.
$$

Price index (4)

▶ Then we continue the calculation of $p_i^{1-\sigma}$ i

$$
\rho_i^{1-\sigma} = \int_0^\infty \theta x \left(\frac{x}{\Phi_i}\right)^{-\frac{\sigma}{\theta}} e^{-x} \frac{dx}{\theta x \left(\frac{x}{\Phi_i}\right)^{-\frac{1}{\theta}}}
$$

$$
= \int_0^\infty \left(\frac{x}{\Phi_i}\right)^{\frac{1-\sigma}{\theta}} e^{-x} dx
$$

$$
= \Phi_i^{-\frac{1-\sigma}{\theta}} \underbrace{\int_0^\infty x^{\frac{1-\sigma}{\theta}} e^{-x} dx}_{= \Gamma\left(\frac{\theta+1-\sigma}{\theta}\right)}
$$

).

where $\Gamma(t) = \int_0^\infty$ $\int_0^\infty x^{t-1} e^{-x} dx$ is the Gamma function. \blacktriangleright Therefore, the price index is 1

$$
p_i = \gamma \Phi_i^{-\frac{1}{\theta}},
$$
 where γ is just a constant $\gamma = \Gamma \left(\frac{\theta + 1 - \sigma}{\theta} \right)^{1/(1 - \sigma)}$

Closing the model (1)

- \triangleright Assume that there is only one sector (manufacturing).
- ▶ Assume trade balances.
	- \blacktriangleright No trade surplus/deficit.
- \blacktriangleright Let X_i and Y_i be *i's* total spending and gross production, respectively.
- \blacktriangleright Let X_{ni} be the trade value from *i* to *n*.
- \blacktriangleright Then, we have

$$
Y_i = \sum_{n=1}^{N} X_{ni}.\tag{7}
$$

and

$$
X_i = \sum_{n=1}^{N} X_{in}.
$$
 (8)

Closing the model (2)

 \blacktriangleright Trade balances mean

 \blacktriangleright Adding X_{ii} (the home purchase in *i*) to both sides,

$$
\sum_{n=1}^N X_{ni} = \sum_{n=1}^N X_{in}.
$$

 \blacktriangleright This, [\(7\)](#page-24-0), and [\(8\)](#page-24-1) yield

 $Y_i = X_i$.

Closing the model (3)

▶ Assume the Cobb-Douglas production function so that the cost function takes the form of

$$
c_i = w_i^{\beta} p_i^{1-\beta}.
$$

 \blacktriangleright This implies

$$
w_i L_i = \beta Y_i = \beta X_i. \tag{9}
$$

.

 \blacktriangleright Using [\(7\)](#page-24-0) and [\(9\)](#page-26-0), we have

$$
w_i L_i = \sum_{n=1}^{N} w_n L_n \pi_{ni}
$$

=
$$
\sum_{n=1}^{N} w_n L_n \frac{T_i (c_i d_{ni})^{-\theta}}{\sum_{k=1}^{N} T_k (c_k d_{nk})^{-\theta}}
$$

=
$$
\sum_{n=1}^{N} w_n L_n \frac{T_i (w_i^{\beta} \rho_i^{1-\beta} d_{ni})^{-\theta}}{\sum_{k=1}^{N} T_k (w_k^{\beta} \rho_k^{1-\beta} d_{nk})^{-\theta}}
$$

Closing the model (4)

 \blacktriangleright We can rewrite the price index

$$
p_i = \gamma \left(\sum_{n=1}^N T_n (c_n d_{in})^{-\theta} \right)^{-\frac{1}{\theta}}
$$

=
$$
\gamma \left(\sum_{n=1}^N T_n (w_n^{\beta} p_n^{1-\beta} d_{in})^{-\theta} \right)^{-\frac{1}{\theta}}.
$$

Equilibrium conditions

An equilibrium is characterized by a tuple of $\{w_i\}_{i=1}^N$ and $\{p_i\}_{i=1}^N$ such that

$$
w_i = \frac{1}{L_i} \sum_{n=1}^{N} w_n L_n \frac{T_i (w_i^{\beta} p_i^{1-\beta} d_{ni})^{-\theta}}{\sum_{k=1}^{N} T_k (w_k^{\beta} p_k^{1-\beta} d_{nk})^{-\theta}}
$$
(10)

and

$$
p_i = \gamma \left(\sum_{n=1}^N T_n (w_n^{\beta} p_n^{1-\beta} d_{in})^{-\theta} \right)^{-\frac{1}{\theta}}
$$
(11)

for $i = 1, \cdots, N$.

- \blacktriangleright This is a system of 2N equations for 2N unknowns.
- This does not guarantee the existence and uniqueness of an equilibrium.
- ▶ But, Alvarez and Lucas (2007) established the existence and uniqueness. No worry about them.

Let's compute it

- ▶ We'll compute an equilibrium with Julia.
- ▶ That is, we'll find a solution $\{w_i\}_{i=1}^N$ and $\{p_i\}_{i=1}^N$ for equations [\(10\)](#page-28-0) and [\(11\)](#page-28-1).