
Solving the EK model with Julia

Motoaki Takahashi

July 24, 2024

1 Installing Julia and VS Code

The first step to compute the EK model with Julia is to install Julia. It is convenient to use
Visial Studio Code (henceforth, VS Code) to write Julia codes. So we also install VS Code.
Both software pachages are free.

Here we download Julia v1.6.7 (Long-term support (LTS) release).1 Access
https://julialang.org/downloads/
and go to "Long-term support (LTS) release: v1.6.7 (July 19, 2022)." Download the file that
fits your environment. Install it.

VS Code is downloadable at
https://code.visualstudio.com/Download

After you install VS Code, you need to set up the Julia extension on VS Code. The steps
for this is detailed at
https://code.visualstudio.com/docs/languages/julia
Usually the Julia extension on VS Code automatically find your Juli exe file, but you may
need to specify the path of the Julia exe file on VS Code.

2 A very brief introduction to Julia

2.1 Basic matrix algebra

What we need to do to compute an equilibrium of the EK model is calculations of vectors and
matrices.

Make a three-dimensional vector of ones. Name it a.

a = ones(3)

size(a)
1I ask you to download a somewhat old version only bacause I am familiar with this version, not the latest

one. I guess that the developers of Julia recommend to use the latest version of Julia. And I encourage you to
explore the latest version after this course.

1

https://julialang.org/downloads/
https://code.visualstudio.com/Download
https://code.visualstudio.com/docs/languages/julia


Notice that in Julia, vectors are column vectors. So a is a 3× 1 vector. Let’s make a vector
whose elements are all different.

b = [1; 2; 3]

c = [1, 2, 3]

b == c

a + b

To make a column vector, you put ; or , after numbers.
How about row vectors? Let’s make a three-dimensional row vector of ones and a row

vector consisting of 1, 2, 3.

d = ones(3)’

e = [1 2 3]

In the first line, ’ after ones(3) means transposition. Note that to define row vector e, we
write neither ; nor ,. Just empty spaces to align numbers.

To compute the EK model, you need not only vectors but also matrices. Let’s make a
2× 3 matrix whose elements are all zero.

A = zeros(2, 3)

size(2, 3)

Notice that the first element, 2, in the zeros function specifies the number of rows and the
second element, 3, the number of columns. Let’s make a matrix whose elements are all different.

B = [1 2 3; 4 5 6]

This matrix B means

B =

[
1 2 3

4 5 6

]
.

So, the first three elements before ; is the first row, the next three elements after ; the second.
Let’s make a different matrix.

C = [-1 -3 -5; -7 -9 -11]

Then let’s premultiply a matrix to a vector.

A * b

B * b

Notice that A and B are both 2× 3 vectors, and b is a 3× 1 vector, so these two multiplications
are well-defined.2

Now we introduce a very important concept (lingo?) in Julia. It is "broadcast."
2If dimensions are not aligned to produce well-defined multiplications, Julia spells an error message.

2



abs(C)

abs.(C)

I think the first line yields an error, the second line does not. The difference is only . between
abs and (C). This . is a broadcast. In short, broadcasts apply specified manipulation to a
vector or a matrix element-by-element. abs takes an absolute value of a scalar and is a function
whose argument must be a scalar. But the argument, C, is a matrix. To apply the abs to each
element of matrix C, we need to explicitly write the broadcast symbol ..

Another usage of broadcasts is to get element-by-element division or multiplications of
vectors or matrices.

D = B ./ C

E = B .* C

G = B * C

The first two lines yield 2× 3 matrices, and the last line errors. The first line computes

D =

[
−1 −2/3 −3/5

−4/7 −5/9 −6/11

]
.

Since matrices B and C have the same dimensions, D and E are well-defined. But B*C is not
well-defined.3

2.2 Loop

Sometimes you want to do the same operation to multiple objects. The loop helps you do so.
We discuss two kinds of loops: the for loop and the while loop.

H = zeros(size(D))

for i in 1:3

H[1, i] = abs(D[1, i])

end

In the first line, we made a matrix whose elements are all zeros and which have the same
dimensions as D. We named this matrix H. Then, for i = 1, 2, 3, we replaced the (1, i) element
of H with the absolute value of the (1, i) element of D.

We can insert a for loop in a for loop.

J = zeros(size(D))

for i in 1:3

for j in 1:2
3See a basic textbook of linear algebra if you do not know the reason.

3



H[j, i] = abs(D[j, i])

end

end

J == abs.(D)

We first made matrix J whose elements are all zeros and which have the same dimensions as D.
Then we replaced each element in H with the absolute value of the corresponding element in D.
By "corresponding", I meant the same indices for the row and the column.

We move on to the while loop.

count = 0

tol = 0.2

maxit = 1000

K = [1, 2]

L = [3, 7]

dif = maximum(abs.(K - L))

while dif > tol && count < maxit

K = K + fill(0.1, 2)

dif = maximum(abs.(K - L))

count = count + 1

end

This while loop means that we keep adding 0.1 to any element in K if dif (in this case, the
absolute distance between K and L) is greater than the predetermined tolerance value tol

(0.2), and if the number of iteration count is smaller than the predetermined upper bound for
iterations maxit (1000).

2.3 Function

It is necessary to define a function that maps a vector to a vector to solve the EK model.

function my_function(a)

output = a + ones(size(a))

return output

end

a_1 = [1, 3, 4]

a_2 = my_function(a_1)

4



In the code above, we define a new function named new_function. There, we add the vector
whose element is all one to a given input vector, say a. If a1 = (1, 3, 4)T is an input,4 then the
function yields an object named a_2.

2.4 Plots

Sometimes you want to make graphs. To do so, you need to install a package.

using Pkg

Pkg.add("Plots")

using Plots

The second line is to install package "Plots." The third line declares that we use the package
"Plots" from now on. Once you installed the package, you do not have to run the first line
again.

Let’s draw a simple graph.

x = 0.1:0.1:1

y1 = x .^ 2

y2 = x .^ (1/2)

plot(x, y1)

plot!(x, y2)

For the domain of x from 0.1 to 1 with the step size 0.1, we’ve drawn y1 = x2 and y2 =
√
x.

In the last line, the exclamation ! after plot declares that you add a line plot to your existing
graph. You may want to add legends and save the graph as a pdf file in your current directory.

plot(x, y1, label = "x squared", xlabel = "x", ylabel = "y")

plot!(x, y2, label = "sqrt x")

savefig("figure1.pdf")

If you want to dive deep into computation with Julia, I recommend you to read
https://julia.quantecon.org/intro.html

3 Writing a code to find equilibria

Here, we consider a simple version of the EK model, where the cost of a bundle of inputs in
country i is the wage in the country ci = wi. We assume that there is no non-tradeable sector.

4For a vector x, xT denotes the transpose of x.

5

https://julia.quantecon.org/intro.html


Then an equilibrium is characterized by the following equations.

wiLi =

N∑
n=1

πniwnLn (1)

and

πni =
Ti(widni)

−θ∑N
j=1 Tj(wjdnj)−θ

=
Ti(widni)

−θ

Φn
, (2)

where

Φn =
N∑
j=1

Tj(wjdnj)
−θ. (3)

Notations are as in the slides on the EK model. Φn is often called the market access in country
n. Note that endogenous variables in these equations are (wi)

N
i=1, (Φi)

N
i=1, and (πni)

N,N
n=1,i=1.

Note that (1) can be solved for wi as

wi =
1

Li

N∑
n=1

πniwnLn. (4)

The outline of an iterative algorithm to solve this system of equations is as follows.

1. Guess (wi)
N
i=1.

2. Given (wi)
N
i=1, compute (Φi)

N
i=1 and (πni)

N,N
n=1,i=1 using (3) and (2).

3. Given such (πni)
N,N
n=1,i=1, update (wi)

N
i=1 using (4). If the new wages are close enough to

the old ones, stop. Otherwise, go to the step 1 with the updated wages as the initial
guess.

The code to implement such an algorithm is EK.jl.

6


	Installing Julia and VS Code
	A very brief introduction to Julia
	Basic matrix algebra
	Loop
	Function
	Plots

	Writing a code to find equilibria

