The Melitz-Chaney Model

Motoaki Takahashi

Recent Advances in International Trade at the University of Mainz

July 3, 2024

Motivation

- \blacktriangleright In the Krugman model, all firms have the same productivity, and all firms export.
- But, in reality, only a small fraction of firms export, and exporting firms are larger and more productive.
	- ▶ Large employment (the number of employees or total work hours),
	- ▶ Large sales,
	- \blacktriangleright High value-added per worker.
	- ▶ See, for example, Bernard, Jensen, Redding, and Schott (2007), p.125.
- ▶ Therefore, we introduce firm heterogeneity.
	- \triangleright So that only productive firms export in the model.

- ▶ In the following, we discuss a simple version of the Melitz-Chaney model following Allen and Arkolakis's lecture notes.
- \blacktriangleright The set of countries is S.
- ▶ Each country $i \in S$ is populated by an exogenous measure L_i of workers/consumers.
- \blacktriangleright Each worker supplies a unit of labor inelastically.
- ▶ Labor is the only factor of production.

Varieties and firms (1)

- ▶ Each firm produces a different variety.
- ▶ The set of varieties produced in country *i* is denoted by $Ω_i$.
	- \blacktriangleright Ω_i is an endogenous object.
- ▶ The set of varieties produced in the world is $Ω = \bigcup_{i \in S} Ω_i$.
	- $▶$ But, in equilibrium, a subset of $Ω$ is not consumed by consumers in a country if the subset is not exported to the country.
- \blacktriangleright There is a mass M_i of firms in country *i*.
- \triangleright Firms in country *i* must incur a fixed cost f_{ii} to export to destination *j*.

Varieties and firms (2)

- ▶ Firms are heterogeneous.
- **Each firm in country i draws productivity** φ **from a cumulative distribution** function $G_i(\varphi)$.
	- It costs a productivity- φ firm $1/\varphi$ units of labor to produce one unit of its variety.
	- **EX** Henceforth, we say "firm φ " because firms that have the same productivity behave in the same way.
- ▶ All firms are subject to iceberg trade costs $\{\tau_{ii}\}_{i,i\in S}$.

Preferences and budget constraints

 \blacktriangleright The utility of consumers in *i* is

$$
U_j=\left(\sum_{i\in S}\int_{\Omega_{ij}}(q_{ij}(\omega))^{\frac{\sigma-1}{\sigma}}d\omega\right)^{\frac{\sigma}{\sigma-1}}.
$$

- \triangleright Ω_{ii} : the set of varieties produced in *i* and available in *j*. \blacktriangleright q_{ij} (ω) : the demand of variety ω shipped from *i* to *j*. \blacktriangleright σ : the elasticity of substitution.
- \blacktriangleright The budget constraint is

$$
\sum_{i\in S}\int_{\Omega_{ij}}p_{ij}(\omega)q_{ij}(\omega)d\omega=Y_j.
$$

 \blacktriangleright $p_{ij}(\omega)$: the price of ω from *j* that consumers in *i* face. \triangleright Y_j: the total expenditure in j.

Optimal demand

 \triangleright The demand for ω produced in *i* by consumers in *i* is

$$
q_{ij}(\omega)=\left(\frac{p_{ij}(\omega)}{P_j}\right)^{-\sigma}\frac{Y_j}{P_j}.
$$

where

$$
P_j=\left(\sum_{i\in S}\int_{\Omega_{ij}}p_{ij}(\omega)^{1-\sigma}d\omega\right)^{\frac{1}{1-\sigma}}.
$$

 \blacktriangleright The amount spend on variety ω is

$$
x_{ij}(\omega)=p_{ij}(\omega)q_{ij}(\omega)=p_{ij}(\omega)^{1-\sigma}Y_jP_j^{\sigma-1}.
$$

 \blacktriangleright Integrating this across all varieties, the aggregate trade value from *i* to *j* is

$$
X_{ij} = \int_{\Omega_{ij}} x_{ij}(\omega) d\omega = Y_j P_j^{\sigma-1} \int_{\Omega_{ij}} p_{ij}(\omega)^{1-\sigma} d\omega.
$$
 (1)

Optimal prices

 \triangleright Firm φ in *i* sets the optimal prices (across various destinations) to maximize its profits

$$
\max_{\{p_{ij}(\varphi)\}_{j\in S}}\sum_{j\in S}\left(p_{ij}(\varphi)q_{ij}(\varphi)-\frac{w_i}{\varphi}\tau_{ij}q_{ij}(\varphi)-f_{ij}\right)
$$

such that

$$
q_{ij}(\varphi)=p_{ij}(\varphi)^{-\sigma}Y_jP_j^{\sigma-1}.
$$

 \triangleright Substituting the demand functions into the maximand yields

$$
\max_{\{p_{ij}(\varphi)\}_{j\in S}}\sum_{j\in S}\left(p_{ij}(\varphi)^{1-\sigma}Y_jP_j^{\sigma-1}-\frac{w_i}{\varphi}\tau_{ij}p_{ij}(\varphi)^{-\sigma}Y_jP_j^{\sigma-1}-f_{ij}\right).
$$

EX The first-order consition characterizes the optimal price that firm φ from *i* sets in *j*

$$
p_{ij}(\varphi)=\frac{\sigma}{\sigma-1}\frac{w_i}{\varphi}\tau_{ij}.
$$

Trade values and operating profits

 \triangleright Firm φ 's trade value from *i* to *j* conditional on it serving *j* is

$$
x_{ij}(\varphi) = p_{ij}(\varphi)q_{ij}(\varphi) = \left(\frac{\sigma}{\sigma-1}\frac{w_i}{\varphi}\tau_{ij}\right)^{1-\sigma}Y_jP_j^{\sigma-1}.
$$
 (2)

 \triangleright The operating profits that firm φ from *i* earning in *j* is

$$
\pi_{ij}(\varphi) = \left(p_{ij}(\varphi) - \frac{w_i}{\varphi} \tau_{ij}\right) q_{ij}(\varphi)
$$
\n
$$
= \left(\frac{\sigma}{\sigma - 1} \frac{w_i}{\varphi} \tau_{ij} - \frac{w_i}{\varphi} \tau_{ij}\right) \left(\frac{\sigma}{\sigma - 1} \frac{w_i}{\varphi} \tau_{ij}\right)^{-\sigma} Y_j P_j^{\sigma - 1}
$$
\n
$$
= \frac{1}{\sigma} \left(\frac{\sigma}{\sigma - 1}\right)^{1 - \sigma} \left(\frac{w_i}{\varphi} \tau_{ij}\right)^{1 - \sigma} Y_j P_j^{\sigma - 1}
$$
\n
$$
= \frac{1}{\sigma} x_{ij}(\varphi).
$$
\n(3)

Price indices and trade values

- \blacktriangleright Let $h_{ii}(\varphi)$ be the probability density function of productivity of firms from country i that sells to i .
- \blacktriangleright Then we have

$$
\int_{\Omega_{ij}} p_{ij}(\varphi)^{1-\sigma} d\omega
$$
\n
$$
= \int_0^\infty M_{ij} \left(\frac{\sigma}{\sigma - 1} \frac{w_i}{\varphi} \tau_{ij} \right)^{1-\sigma} h_{ij}(\varphi) d\varphi
$$
\n
$$
= M_{ij} \left(\frac{\sigma}{\sigma - 1} w_i \tau_{ij} \right)^{1-\sigma} (\tilde{\varphi}_{ij})^{\sigma - 1},
$$
\n(4)

where $\tilde\varphi_{ij}=\left(\int_0^\infty \varphi^{\sigma-1}h_{ij}(\varphi)d\varphi\right)^{1/(\sigma-1)}$ is what Melitz called the "average" productivity of firms that sell from i to j .

 \blacktriangleright Then we can rewrite the aggregate trade flow, [\(1\)](#page-6-0), as

$$
X_{ij} = \left(\frac{\sigma}{\sigma - 1}\right)^{1-\sigma} \tau_{ij}^{1-\sigma} w_{1-\sigma} M_{ij} (\tilde{\varphi}_{ij})^{\sigma - 1} Y_j P_j^{\sigma - 1}.
$$

Selection into exporting and cutoff productivity

 \triangleright Firm φ in country *i* exports to *i* if and only if its operating profits exceeds the fixed cost to export there

 $\pi_{ii}(\varphi) \geq f_{ii}.$

 \triangleright Using [\(2\)](#page-8-0) and [\(3\)](#page-8-1), we rewrite this condition as

$$
\frac{1}{\sigma}\left(\frac{\sigma}{\sigma-1}\frac{w_j}{\varphi}\tau_{ij}\right)^{1-\sigma}Y_jP_j^{\sigma-1}\geq f_{ij}.
$$

That is, productivity φ exceeds the cutoff productivity φ_{ij}^*

$$
\varphi \geq \varphi_{ij}^* = \left(\frac{\sigma f_{ij}(\frac{\sigma}{\sigma-1}w_i \tau_{ij})^{\sigma-1}}{Y_j P_j^{\sigma-1}}\right)^{\frac{1}{\sigma-1}}.
$$
\n(5)

What's h_{ij} ?

\n- For
$$
\varphi < \varphi_{ij}^*
$$
, $h_{ij}(\varphi) = 0$.
\n- For $\varphi \geq \varphi_{ij}^*$, $h_{ij}(\varphi) = \frac{g_i(\varphi)}{\int_{\varphi_{ij}^*}^{\infty} g_i(\varphi) d\varphi} = \frac{g_i(\varphi)}{1 - G_i(\varphi_{ij}^*)}$.
\n

Cutoffs pin down masses of exporters

 \blacktriangleright The "average" productivity of firms selling from *i* to *i* is

$$
\tilde{\varphi}_{ij} = \left(\frac{1}{1-G_i(\varphi_{ij}^*)}\int_{\varphi_{ij}^*}^{\infty}\varphi^{\sigma-1}dG_i(\varphi)\right)^{\frac{1}{\sigma-1}}.
$$

 \triangleright The mass of firms selling from *i* to *j* is

$$
M_{ij}=(1-G_i(\varphi_{ij}^*))M_i.
$$

 \triangleright The aggregate trade value from *i* to *j* is

$$
X_{ij} = \left(\frac{\sigma}{\sigma - 1}\right)^{1 - \sigma} \tau_{ij}^{1 - \sigma} w_i^{1 - \sigma} M_i \left(\int_{\varphi_{ij}^*}^{\infty} \varphi^{\sigma - 1} dG_i(\varphi)\right) Y_j P_j^{\sigma - 1}.
$$
 (6)

The Pareto distribution (Chaney)

- ▶ So far we have not specified $G_i(\cdot)$.
- **Example 5 For simplicity, suppose that productivity** φ **is no less than 1 in any country** $\varphi \in [1,\infty)$.
- \triangleright Assume that productivity of firms in *i* follows the Pareto distribution with shape parameter θ_i

$$
G_i(\varphi) = 1 - \varphi^{-\theta_i}.\tag{7}
$$

▶ Assume $\theta_i > \sigma - 1$ so that trade flows are finite.

Examples of the Pareto distribution

See pareto.jl for the code to produce this figure.

The Pareto distributed productivity leads to the gravity equation (1)

 \blacktriangleright A part of the average productivity is

$$
\int_{\varphi_{ij}^*}^{\infty} \varphi^{\sigma-1} dG_i(\varphi) = \int_{\varphi_{ij}^*}^{\infty} \varphi^{\sigma-1} \left(\frac{d(1-\varphi^{-\theta_i})}{d\varphi} \right) d\varphi
$$

\n
$$
= \theta_i \int_{\varphi_{ij}^*}^{\infty} \varphi^{\sigma-\theta_i-2} d\varphi
$$

\n
$$
= \frac{\theta_i}{\theta_i + 1 - \sigma} (\varphi_{ij}^*)^{\sigma-\theta_i-1}
$$

\n
$$
= \frac{\theta_i}{\theta_i + 1 - \sigma} \left(\frac{\sigma f_{ij}(\frac{\sigma}{\sigma-1} w_i \tau_{ij})^{\sigma-1}}{Y_j P_j^{\sigma-1}} \right)^{\frac{\sigma-\theta_i-1}{\sigma-1}},
$$
\n(8)

where the last equality follows from the cutoff [\(5\)](#page-10-0).

The Pareto distributed productivity leads to the gravity equation (2)

 \triangleright [\(6\)](#page-12-0) and [\(8\)](#page-15-0) yield

$$
X_{ij} = \left(\frac{\sigma}{\sigma - 1}\right)^{1 - \sigma} \tau_{ij}^{1 - \sigma} w_i^{1 - \sigma} M_i \left(\frac{\theta_i}{\theta_i + 1 + \sigma} \left(\frac{\sigma f_{ij}(\frac{\sigma}{\sigma - 1} w_i \tau_{ij})^{\sigma - 1}}{Y_j P_j^{\sigma - 1}}\right)^{\frac{\sigma - \theta_i - 1}{\sigma - 1}}\right) Y_j P_j^{\sigma - 1}
$$

= $C_{1,i}(\tau_{ij} w_i)^{-\theta_i} f_{ij}^{\frac{\sigma - \theta_i - 1}{\sigma - 1}} M_i (Y_j P_j^{\sigma - 1})^{\frac{\theta_i}{\sigma - 1}},$ (9)

where
$$
C_{1,i} = \sigma^{\frac{\sigma - \theta_i - 1}{\sigma - 1}} \left(\frac{\sigma}{\sigma - 1} \right)^{-\theta_i} \left(\frac{\theta_i}{\theta_i + 1 - \sigma} \right)
$$
.

Free entry (1)

- Firms have to incur an entry cost f_i^e before they learn their productivity.
- \triangleright The free entry condition is that the expected profits are equal to the entry cost

$$
f_i^e = E_\varphi \left[\sum_{j \in S} \max \{ \pi_{ij}(\varphi) - f_{ij}, 0 \} \right].
$$

 \blacktriangleright Then we can rewrite the equation above as

$$
f_i^e = \int_1^\infty \sum_{j \in S} \max{\pi_{ij}(\varphi) - f_{ij}, 0} dG_i(\varphi)
$$

=
$$
\sum_{j \in S} \int_{\varphi_{ij}^*}^\infty (\pi_{ij}(\varphi) - f_{ij}) dG_i(\varphi).
$$
 (10)

Free entry (2)

 \triangleright With the Pareto distribution [\(7\)](#page-13-0), we can rewrite [\(10\)](#page-17-0) as

$$
f_i^e = \sum_{j \in S} \frac{\sigma - 1}{\theta_i + 1 - \sigma} \left(\frac{\sigma}{\sigma - 1} w_i \tau_{ij} \right)^{-\theta_i} \sigma^{-\frac{\theta_i}{\sigma - 1}} f_{ij}^{\frac{\sigma - \theta_i - 1}{\sigma - 1}} Y_j^{\frac{\theta_i}{\sigma - 1}} P_j^{\theta_i}.
$$

▶ Country *i's* only source of income is wages, so we have

$$
Y_j = w_j L_j. \tag{11}
$$

 \blacktriangleright Therefore we have

$$
f_i^e = \sum_{j \in S} \frac{\sigma - 1}{\theta_i + 1 - \sigma} \left(\frac{\sigma}{\sigma - 1} w_i \tau_{ij} \right)^{-\theta_i} \sigma^{-\frac{\theta_i}{\sigma - 1}} f_{ij}^{\frac{\sigma - \theta_i - 1}{\sigma - 1}} (w_j L_j)^{\frac{\theta_i}{\sigma - 1}} P_j^{\theta_i}.
$$
 (12)

Rewriting price indices (1)

 \blacktriangleright The average productivity is

$$
\tilde{\varphi}_{ij}^{\sigma-1} = \frac{1}{1 - G_i(\varphi_{ij}^*)} \int_{\varphi_{ij}^*}^{\infty} \varphi^{\sigma-1} dG_i(\varphi)
$$

\n
$$
= \frac{1}{(\varphi_{ij}^*)^{-\theta_i}} \frac{\theta_i}{\theta_i + 1 - \sigma} (\varphi_{ij}^*)^{\sigma-\theta_i-1}
$$

\n
$$
= \frac{\theta_i}{\theta_i + 1 - \sigma} \frac{\sigma f_{ij}(\frac{\sigma}{\sigma-1} w_i \tau_{ij})^{\sigma-1}}{Y_j P_j^{\sigma-1}}.
$$
\n(13)

 \blacktriangleright [\(4\)](#page-9-0) and [\(13\)](#page-19-0) yield

$$
P_j^{1-\sigma} = \sum_{i \in S} M_{ij} \left(\frac{\sigma}{\sigma - 1} w_i \tau_{ij} \right)^{1-\sigma} \frac{\theta_i}{\theta_i + 1 - \sigma} \frac{\sigma f_{ij} \left(\frac{\sigma}{\sigma - 1} w_i \tau_{ij} \right)^{\sigma - 1}}{Y_j P_j^{\sigma - 1}}.
$$

Rewriting price indices (2)

 \blacktriangleright The last equation is rewritten as

$$
Y_{j} = \sum_{i \in S} M_{ij} \frac{\theta_{i}}{\theta_{i} + 1 - \sigma} \sigma f_{ij}
$$

\n
$$
= \sum_{i \in S} (1 - G(\varphi_{ij}^{*})) M_{i} \frac{\theta_{i}}{\theta_{i} + 1 - \sigma} \sigma f_{ij}
$$

\n
$$
= \sum_{i \in S} (\varphi_{ij}^{*})^{-\theta_{i}} M_{i} \frac{\theta_{i}}{\theta_{i} + 1 - \sigma} \sigma f_{ij}
$$

\n
$$
= \sum_{i \in S} \left(\frac{\sigma f_{ij} \left(\frac{\sigma}{\sigma - 1} w_{i} \tau_{ij} \right)^{\sigma - 1}}{Y_{j} P_{j}^{\sigma - 1}} \right)^{-\frac{\theta_{j}}{\sigma - 1}} M_{i} \frac{\theta_{i}}{\theta_{i} + 1 - \sigma} \sigma f_{ij}
$$

\n
$$
= \sum_{i \in S} (\sigma f_{ij})^{-\frac{\theta_{j}}{\sigma - 1}} \left(\frac{\sigma}{\sigma - 1} w_{i} \tau_{ij} \right)^{-\theta_{j}} Y_{j}^{\frac{\theta_{j}}{\sigma - 1}} P_{j}^{\theta_{j}} M_{i} \frac{\theta_{i}}{\theta_{i} + 1 - \sigma} \sigma f_{ij}.
$$

Rewriting price indices (3)

► Solving (14) for
$$
P_j^{-\theta_j}
$$
, we have

$$
P_j^{-\theta_j} = \sum_{i \in S} \frac{\theta_i}{\theta_i + 1 - \sigma} M_i(\sigma f_{ij})^{\frac{-\theta_j + \sigma - 1}{\sigma - 1}} \left(\frac{\sigma}{\sigma - 1} w_i \tau_{ij}\right)^{-\theta_j} (w_j L_j)^{\frac{\theta_j - \sigma + 1}{\sigma - 1}}.
$$
 (15)

Trade balance

▶ Assume that the income is equal to the expenditure (trade balance)

$$
Y_j=\sum_{i\in S}X_{ij}.
$$

 \blacktriangleright This, [\(9\)](#page-16-0), and [\(11\)](#page-18-0) yield

$$
w_j L_j = \sum_{i \in S} C_{1,i} (\tau_{ij} w_i)^{-\theta_i} f_{ij}^{\frac{\sigma - \theta_i - 1}{\sigma - 1}} M_i (w_j L_j P_j^{\sigma - 1})^{\frac{\theta_i}{\sigma - 1}}.
$$
 (16)

- \blacktriangleright Now we end up with a system of 3N equations [\(12\)](#page-18-1), [\(15\)](#page-21-0), [\(16\)](#page-22-0) with 3N unknowns $\{w_i\}_{i\in\mathcal{S}}$, $\{M_i\}_{i\in\mathcal{S}}$, and $\{P_i\}_{i\in\mathcal{S}}$.
- \blacktriangleright This characterizes an equilibrium.