Production Networks

Motoaki Takahashi

Recent Advances in International Trade at the University of Mainz

July 17, 2025

Background

- Goods and services are produced through supply chains.
 - Coal is used in steel production; steel is used in truck production; trucks are used in postal services (sector-to-sector).
 - Hyundai sells battery packs to Volkswagen; Volkswagen sells busses to a bus company (firm-to-firm).
- ► How are such production networks formed?
- Related questions:¹
 - ► How does a shock in a particular sector/firm transmit through production networks?
 - Anticipating geopolitical risks, how should a country form supply chain networks with foreign countries?

¹These are not addressed in the model we will focus on, though.

Literature (1)

- There is a massive and still growing literature on production networks.
- Classic
 - ► Hulten (1978)
- Sector-to-sector
 - Baqaee and Farhi (2019a), Baqaee and Farhi (2024), Baqaee (2018), Baqaee and Farhi (2019b)
 - Acemoglu and Azar (2020), Acemoglu et al. (2012)
 - ► Kopytov et al. (2024): the one we will study here
 - Liu (2019), Liu and Tsyvinski (2024)

Literature (2)

- ► Firm-to-firm
 - ► Discrete²
 - Dhyne et al. (2023), Dhyne et al. (2022), Carvalho et al. (2020)
 - Continuous³
 - Lim (2018), Miyauchi (2024), Huneeus (2020), Eaton et al. (2023)
 - Empirics
 - Dhyne et al. (2020), Bernard et al. (2019)⁴, Baqaee et al. (2023)
 - Pure theory (or mainly theory)
 - ▶ Oberfield (2018)⁵, Acemoglu and Tahbaz-Salehi (2024), Grossman et al. (2023), Grossman et al. (2024a),⁶ Grossman et al. (2024b)

²Only quantitative models listed

³Only quantitative models listed

⁴Theory and its test

⁵Can be relabeled as sector-to-sector, though.

⁶They calibrated their model, but did not use data on firm-to-firm trade.

Trade-off

- ▶ Which would you source from?
 - ▶ an expensive, but stable supplier,
 - a cheap, but unstable supplier.

Overview of the model

- Here we study the model of Kopytov, Mishra, Nimark, and Taschereau-Dumouchel (2024).
- There is one representative firm in each sector.
- ► The representative firm chooses the exponents in its production function.
 - ▶ To what extent does the firm rely on each sector?
- ▶ The firm is owned by households. As such, it takes risks into account.
 - ► The intermediate good from this sector enhances my production, but the productivity of this sector is volatile...
- ► The unique equilibrium is (ex-ante) efficient.
- Therefore, we can characterize equilibrium networks and allocations as a solution to the planner's problem.
- Eventually, the firm's problem reduces to choosing Domar weights.

Setup

- ▶ There are *n* sectors, indexed by $i \in \{1, \dots, n\}$.
- Each sector produces a differentiated good.
- ▶ In each sector, there is a representative firm.
 - ightharpoonup We use sector i, firm i, and product i interchangeably.
- Firms face perfect competition. Equilibrium profits are zero.

Production functions and techniques

- ► Representative firm i has access to a set of production techniques A_i and chooses only one technique $\alpha_i \in A_i$.
- \triangleright The production function of i is

$$F(\alpha_i, L_i, X_i) = e^{\varepsilon_i} A_i(\alpha_i) \zeta(\alpha_i) L_i^{1 - \sum_{j=1}^n \alpha_{ij}} \prod_{j=1}^n X_{ij}^{\alpha_{ij}}, \quad (1)$$

- L_i is labor inputs,
- $ightharpoonup X_i = (X_{i1}, \cdots, X_{in})^{\top}$ is a vector of intermediate inputs,
- \triangleright ε_i is the stochastic component of firm i's total factor productivity,
- $\alpha_i = (\alpha_{i1}, \dots, \alpha_{in})^{\top} \in \mathcal{A}_i$ is a production technique that determines intermediate input shares and affects total factor productivity through $A_i(\alpha_i)$,
- \triangleright $A_i(\alpha_i)$ is a productivity shifter,
- \triangleright $\zeta(\alpha_i)$ is just a normalization to simplify the cost function.⁷

$$^{7}[\zeta(\alpha_{i})]^{-1} = (1 - \sum_{j=1}^{n} \alpha_{ij})^{1 - \sum_{j=1}^{n} \alpha_{ij}} \prod_{j=1}^{n} \alpha_{ij}^{\alpha_{ij}}.$$

Production techniques and intermediate input shares

▶ We define *i*'s set of feasible production techniques as

$$\mathcal{A}_i = \{\alpha_i \in [0,1]^n : \sum_{j=1}^n \alpha_{ij} \leq \bar{\alpha}_i\},\,$$

where $0 < 1 - \bar{\alpha}_i < 1$ is the lower bound of the share of labor (and the upper bound of the sum of the share of intermediate inputs).

- ▶ Define $A = A_1 \times \cdots \times A_n$ (a Cartesian product).
 - $ightharpoonup \alpha \in \mathcal{A}$ is a production network in this economy.
 - ightharpoonup lpha represents to what extent each sector relies on intermediate inputs from other sectors.
 - $ightharpoonup \alpha$ can be expressed as a matrix.

Productivity shifter $A_i(\alpha_i)$ (1)

- ► The production technique α_i influences i's total factor productivity through $A_i(\alpha_i)$.
- ▶ The authors' example: "beach towels and flowers are not very useful when making a car, and a technique that relies only on these inputs would have a low A_i ."

Assumption 1

 $A_i(\alpha_i)$ is smooth and strictly log-concave.

- ▶ I interpret "smooth" as A_i is differentiable as many times as we wish.
- ▶ Let M be a convex subset of R^n . Function $f: M \to R_+$ is strictly log-concave if

$$f(\theta x + (1 - \theta)y) > f(x)^{\theta} f(y)^{1 - \theta},$$

for any $x, y \in M$ and $0 < \theta < 1$.

ightharpoonup Note that then $\log f$ is strictly concave if f is strictly positive.

Productivity shifter $A_i(\alpha_i)$ (2)

Why do we need Assumption 1?

- 1. There exists a unique technique that solves the optimization problem of the firm.
- 2. For each sector i, there is a unique vector of *ideal* input shares α_i° that maximizes A_i .
 - ► This represents the most productive way to combine intermediate goods to produce good *i*.
 - But, this is not necesarily i's technique choice in equilibrium.
 - Why? Because maximizing A_i is not the same as maximizing i's risk-adjusted expected profits.⁸

Without loss of generality, normalize $A_i(\alpha_i^{\circ})$ for all i.

⁸This is at the core of this paper. We will see it later.

Productivity shifter $A_i(\alpha_i)$ (3)

Example

One example of a function $A_i(\alpha_i)$ that satisfies Assumption 1 is the quadratic form

$$\log A_i(\alpha_i) = \frac{1}{2} (\alpha_i - \alpha_i^{\circ})^{\top} \bar{H}_i(\alpha_i - \alpha_i^{\circ}), \tag{2}$$

where \bar{H}_i is a negative-definite matrix that is also the Hessian of $\log A_i$.

Sectoral productivity shocks ε_i

- Let $\varepsilon = (\varepsilon_1, \dots, \varepsilon_n)^{\top}$ be a vector of sectoral productivity shocks.
- We assume that the vector is normally distributed $\varepsilon \sim \mathcal{N}(\mu, \Sigma)$.
- \blacktriangleright μ determines the expected levels of sectoral productivities.
- $ightharpoonup \Sigma$ determines uncertainty of individual elements of ε and their correlations.
- ightharpoonup arepsilon is the only source of uncertainty in this economy.
- **Each** firm *i* chooses α_i before ε is realized.
- ▶ A high μ_i leads to a low unit cost and a low price of good i.
- ightharpoonup A high Σ_{ii} leads to a volatile price of good *i*.
- ▶ A high Σ_{ij} leads to more correlated prices of good i and j.
- ▶ These affect the sourcing decisions of the firms.

Households (1)

- ► There is one risk-averse representative household in this economy.
- ▶ She chooses $C = (C_1, \dots, C_n)$ to maximize

$$u\left(\left(\frac{C_1}{\beta_1}\right)^{\beta_1}\times\cdots\times\left(\frac{C_n}{\beta_n}\right)^{\beta_n}\right),\tag{3}$$

where $\beta_i > 0$ for all i and $\sum_{i=1}^n \beta_i = 1$.

- ▶ We refer to $Y = \prod_{i=1}^{n} (\beta_i^{-1} C_i)^{\beta_i}$ as aggregate consumption or GDP.
- ▶ The utility function $u(\cdot)$ is CRRA with coefficient of relative risk aversion ρ . That is, (3) is rewritten as

$$\frac{Y^{1-
ho}}{1-
ho}$$

Households (2)

- ► The household makes consumption decisions after uncertainty is resolved.
- ▶ In each state of the world, the household faces the budget constraint

$$\sum_{i=1}^n P_i C_i \leq 1,$$

where P_i is the price of good i, and the wage is used as a numeraire.

- Firms are owned by the representative household.
- Firms maximize expected profits discounted by the household's stochastic discount factor

$$\Lambda = u'(Y)/\bar{P},\tag{4}$$

where
$$\bar{P} = \prod_{i=1}^n P_i^{\beta_i}$$
.

Households (3)

▶ By solving the household's optimization, we can show that

$$y = -\beta^{\top} p$$

where $y = \log Y$, $\beta = (\beta_1, \dots, \beta_n)^{\top}$ and $p = (p_1, \dots, p_n)^{\top}$.

For any i, $p_i = \log P_i$.

Representative firms' optimization: two steps

- 1. The firm decides which production technique to use.
 - ▶ This choice is made before the random productivity vector ε is realized.
- 2. The firm chooses labor and intermediate inputs after the realization of ε .
 - And the household chooses consumption after the realization of ε .
 - That is, the final demand for each good is also determined after the realization of ε.

We solve these problems backwardly.

The firm's second-stage problem

▶ Under a given technique α_i , the cost minimization problem of firm i is

$$K_i(\alpha_i, P) = \min_{L_i, X_i} \left(L_i + \sum_{j=1}^n P_j X_{ij} \right), \tag{5}$$

subject to

$$F(\alpha_i, L_i, X_i) \geq 1.$$

- ▶ The solution to this problem implicitly defines the unit cost of production $K_i(\alpha_i, P)$.
- ▶ Using the production function (1), the unit cost function is

$$K_i(\alpha_i, P) = \frac{1}{e^{\varepsilon_i} A_i(\alpha_i)} \prod_{i=1}^n P_j^{\alpha_{ij}}.$$
 (6)

The firm's first-stage problem

▶ Given an expression for K_i , the first stage of the representative firm's problem is to pick a technique $\alpha_i \in \mathcal{A}_i$ to maximize expected discounted profits

$$\alpha_i^* \in \arg\max_{\alpha_i \in \mathcal{A}_i} E\left[\Lambda Q_i(P_i - K_i(\alpha_i, P))\right]. \tag{7}$$

- $ightharpoonup Q_i$ is the equilibrium demand for good i,
- ightharpoonup the profits in different states of the world are weighted by the household's stochastic discount factor Λ .
- ▶ The representative firm takes P, Q_i , and Λ as given.
- ► Therefore, this problem reduces to $\min_{\alpha_i \in A_i} E[\Lambda Q_i K_i(\alpha_i, P)]$.
- The firm minimizes the weighted expectation of the total cost $Q_iK_i(\alpha_i, P)$ with the weights being Λ .
- ► The firm inherits the risk attitude of the representative household.

Equilibrium prices

► In equilibrium, competitive pressure pushes prices to be equal to unit costs

$$P_i = K_i(\alpha_i, P) \tag{8}$$

for all $i \in \{1, \cdots, n\}$.

Definition 1 (equilibrium)

An equilibrium is a choice of technique $\alpha^* = (\alpha_1^*, \dots, \alpha_n^*)$ and a stochastic tuple $(P^*, C^*, L^*, X^*, Q^*)$ such that:

- 1. (optimal technique choice) For each $i \in \{1, \dots, n\}$, the technique choice $\alpha_i^* \in \mathcal{A}_i$ solves (7) given prices P^* , demand Q_i^* , and the stochastic discount factor Λ^* given by (4).
- 2. (Optimal input choice) For each $i \in \{1, \dots, n\}$, factor demands per unit of output L_i^*/Q_i^* and X_i^*/Q_i^* are a solution to (5) given prices P^* and the chosen technique α_i^* .
- 3. (Consumer maximization) The consumption vector C^* maximizes (3).

Definition 1 (equilibrium): continued

- 4. (Unit cost pricing) For each $i \in \{1, \dots, n\}$, P_i^* solves (8) where $K_i(\alpha_i^*, P^*)$ is given by (6).
- 5. (Market clearing) For each $i \in \{1, \dots, n\}$,

$$C_i^* + \sum_{j=1}^n X_{ji}^* = Q_i^* = F_i(\alpha_i^*, L_i^*, X_i^*), \text{ and } \sum_{i=1}^n L_i^* = 1.$$

Comments on Definition 1

- Conditions 2-5 correspond to the standard competitive equilibrium conditions for an economy with a fixed production network.
 - Firms and the household optimize in a competitive environment.
 - All markets clear given equilibrium prices.
- Condition 1 emphasizes that production techniques, and hence the production network represented by the matrix α^* , are equilibrium objects.

How we proceed

- Fixed production networks,
- Endogenous production networks.

Two objects: the Leontief inverse and the Domar weight

▶ The Leontief inverse is

$$\mathcal{L}(\alpha) = (I - \alpha)^{-1} = I + \alpha + \alpha^2 + \cdots,$$

where

$$\alpha = \begin{bmatrix} \alpha_{11} & \alpha_{12} & \cdots & \alpha_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{n1} & \alpha_{n2} & \cdots & \alpha_{nn} \end{bmatrix},$$

and I is the $n \times n$ identity matrix.

▶ Define the Domar weight ω_i of sector i as the ratio of its sales to nominal GDP

$$\omega_i = \frac{P_i Q_i}{P^\top C}.$$

The vector of Domar weights $\omega = (\omega_1, \dots, \omega_n)^{\top}$ satisfies $\omega^{\top} = \beta^{\top} \mathcal{L}(\alpha) > 0$.

Lemma 1

Under a given network α , the vector of log prices is given by

$$p(\alpha) = -\mathcal{L}(\alpha)(\varepsilon + \mathsf{a}(\alpha)),$$

and log GDP is given by

$$y(\alpha) = \omega(\alpha)^{\top} (\varepsilon + \mathbf{a}(\alpha)),$$

where $a(\alpha) = (\log A_1(\alpha_1), \cdots, \log A_n(\alpha_n))^{\top}$.

- ▶ Lemma 1 describes how prices and GDP depend on the productivity vector $\varepsilon + a(\alpha)$ and the production network α .
- An increase in productivity pushes down prices through the Leontief matrix $\mathcal{L}(\alpha)$.
- ► An increase in productivity has a linear and positive effect on GDP with the coefficient being the Domar weight.

Mean and variance of GDP

Under a fixed network α ,

$$E[y(\alpha)] = \omega(\alpha)^{\top} (\mu + a(\alpha))$$
 (9)

and

$$V[y(\alpha)] = \omega(\alpha)^{\top} \Sigma \omega(\alpha). \tag{10}$$

Corollary 1

For a fixed production network α , the following hold

1. The impact of a change in expected TFP mu_i on the moments of log GDP is given by

$$\frac{\partial E[y]}{\partial \mu_i} = \omega_i$$
, and $\frac{\partial V[y]}{\partial \mu_i} = 0$.

2. The impact of a change in volatility Σ_{ij} on the moments of log GDP is given by

$$\frac{\partial E[y]}{\partial \Sigma_{ij}} = 0$$
, and $\frac{\partial V[y]}{\partial \Sigma_{ij}} = \omega_i \omega_j$.

- ▶ The first part is the Hulten theorem.
- ▶ For the second part, first think about the case j = i.

Firm decisions (1)

- We have discussed the case of fixed production networks.
- Now we move on to endogenous production networks.
- ▶ Let α^* be the equilibrium network.
- Let $\lambda(\alpha^*) = \log \Lambda(\alpha^*)$ (the log of the stochastic discount factor).
- Let $k_i(\alpha_i, \alpha^*) = \log K_i(\alpha_i, P^*(\alpha^*))$ (the log of the unit cost).
- Using these notations, we can reorganize firm i's maximization problem (7) as

$$\alpha_i^* \in \arg\min_{\alpha_i \in \mathcal{A}_i} E[k_i(\alpha_i, \alpha^*)] + Cov[\lambda(\alpha^*), k_i(\alpha_i, \alpha^*)].$$
 (11)

- We can rewrite like this because $\lambda(\alpha^*)$, $p_i(\alpha^*)$, and $k_i(\alpha_i, \alpha^*)$ are normally distributed.
- See the supplementary material for details.

Firm decisions (2)

▶ Taking the expected value of the log of (6), we have

$$E[k_i(\alpha_i,\alpha^*)] = -\mu_i - a_i(\alpha_i) + \sum_{j=1}^n \alpha_{ij} E[p_j].$$

- ► That is, the firm prefers techniques that have high productivity *a_i* and that rely on inputs that are expected to be cheap.
- ► The second term in (11) captures the importance of aggregate risk for the firm's decision.
 - The firm prefers to have a low unit cost in states of the world in which the marginal utility of consumption is high.
 - ▶ The economy is in a bad situation.
 - ⇒ Aggregate consumption (GDP) is low.
 - ⇒ The marginal utility is low.
 - ⇒ The firm really wants to have low costs in such a situation.

Lemma 2

In equilibrium, the technique choice problem of the representative firm in sector i is

$$\alpha_i^* \in \arg\max_{\alpha_i \in \mathcal{A}_i} a_i(\alpha_i) - \sum_{j=1}^n \alpha_{ij} \mathcal{R}_j(\alpha^*),$$
 (12)

where

$$\mathcal{R}(\alpha^*) = E[p(\alpha^*)] + Cov[p(\alpha^*), \lambda(\alpha^*)]$$

is the vector of equilibrium risk-adjusted prices, and where

$$E[p(\alpha^*)] = -\mathcal{L}(\alpha^*)(\mu + a(\alpha^*))$$

and

$$Cov[p(\alpha^*), \lambda(\alpha^*)] = (\rho - 1)\mathcal{L}(\alpha^*)\Sigma[\mathcal{L}(\alpha^*)]^{\top}\beta.$$

Comments on Lemma 2

- All the equilibrium information needed for the firm's problem is contained in the vector of risk-adjusted prices \mathcal{R} .
- R quantity provides an overall measure of the desirability of an input that depends on its expected price and on how its price covaries with the stochastic discount factor.
- Goods that are cheap when aggregate consumption is low are particularly attractive as inputs, controlling for expected prices.

The Hessian matrix of a_i

▶ Define H_i by the Hessian matrix of a_i

$$H_i = \begin{bmatrix} \frac{\partial^2 a_i}{\partial \alpha_{i1}^2} & \frac{\partial^2 a_i}{\partial \alpha_{i1} \partial \alpha_{i2}} & \cdots & \frac{\partial^2 a_i}{\partial \alpha_{i1} \partial \alpha_{in}} \\ \frac{\partial^2 a_i}{\partial \alpha_{i2} \partial \alpha_{i1}} & \frac{\partial^2 a_i}{\partial \alpha_{i2}^2} & \cdots & \frac{\partial^2 a_i}{\partial \alpha_{i2} \partial \alpha_{in}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 a_i}{\partial \alpha_{in} \partial \alpha_{i1}} & \frac{\partial^2 a_i}{\partial \alpha_{in} \partial \alpha_{i2}} & \cdots & \frac{\partial^2 a_i}{\partial \alpha_{in}^2} \end{bmatrix}.$$

► Taking the first order condition of (12) and applying the implicit function theorem, we can show that

$$\frac{\partial \alpha_{ij}}{\partial \mathcal{R}_k} = [H_i^{-1}(\alpha_i)]_{jk},$$

where $[\cdot]_{jk}$ denotes the (j, k) element of a matrix.

Complements vs substitutes: the Hessian matters

- ▶ Does an increase in k's risk-adjusted price \mathcal{R}_k lead to a decrease or an increase in the share of another input $j \neq k$?
- ▶ If $[H_i^{-1}]_{jk} > 0$, we say j and k are substitutes (for i).
 - $\triangleright \mathcal{R}_k \uparrow \Rightarrow \alpha_{ii} \uparrow$
 - ► Substituting away from *k* to *j*
- ▶ If $[H_i^{-1}]_{jk}$ < 0, we say j and k are complements (for i).
 - $\triangleright \mathcal{R}_k \uparrow \Rightarrow \alpha_{ii} \downarrow$
 - ▶ If k is too expensive to buy, i doesn't need j either
- ▶ One sufficient condition for a Hessian matrix H_i to exhibit complementarity for all sectors is $[H_i]_{jk} \ge 0$ for all $j \ne k$.

Example: 4 sectors in partial equilibrium

- Input 1 Steel
- Input 2 Equipment
 - Milling machines and lathes to transform raw steel into usable components
- Input 3 Carbon fiber
 - Carbon fiber can replace steel
- Sector 4 Car manufacturing
 - ► This car manufacturer has a TFP shifter function

$$a_4(\alpha_4) = -\sum_{j=1}^4 \kappa_j (\alpha_{4j} - \alpha_{4j}^{\circ})^2 - \psi_1 (\alpha_{41} - \alpha_{42})^2 - \psi_2 [(\alpha_{41} + \alpha_{43}) - (\alpha_{41}^{\circ} + \alpha_{43}^{\circ})^2].$$

Input shares and $E[p_1]$

Input shares and $V[p_1]$

Lemma 3

An efficient production network α^* solves

$$\mathcal{W} := \max_{\alpha \in \mathcal{A}} W(\alpha, \mu, \sigma),$$

where is a measure of the welfare of the household, and where

$$W(\alpha, \mu, \sigma) := E[y(\alpha)] - \frac{1}{2}(\rho - 1)V[y(\alpha)]$$
 (13)

is welfare under a given network α .

- The relative risk aversion ρ determines the relative importance of the expected log GDP $E[y(\alpha)]$ and the variance of the log GDP $V[y(\alpha)]$.
- ► The welfare depends on only first and second moments of log GDP. This is because preferences are CRRA and log GDP (aggregate consumption) is normally distributed.

Toward Domar weights (1)

Using (9) and (10), we can rewrite the objective function (13) as

$$\omega^{\top}\mu + \omega^{\top} \mathsf{a}(\alpha) - \frac{1}{2}(\rho - 1)\omega^{\top} \Sigma \omega.$$

- ▶ Remember that μ and Σ are exogenous parameters.
 - So the social planner cannot choose them.
- ▶ Only endogenous variables are ω and $a(\alpha)$.
- Moreover, the only term that does not depend exclusively on ω is $\omega^{\top} a(\alpha)$.
- \blacktriangleright We want to rewrite this in terms of ω alone.

Toward Domar weights (2)

Consider the optimization problem

$$\bar{a}(\omega) := \max_{\alpha \in \mathcal{A}} \omega^{\top} a(\omega),$$
 (14)

subject to the definition of the Domar weights given by $\omega^{\top} = \beta^{\top} \mathcal{L}(\alpha)$.

- ▶ We refer to the value function ā as the aggregate TFP shifter function.
- We denote by $\alpha(\omega)$ the solution to (14).
- For given ω, \bar{a} and α(ω) do not depend on μ or Σ.

Example

- We can explicitly solve for \bar{a} and $\alpha(\omega)$ under the quadratic TFP shifter function (2).
- At an interior solution $\alpha \in \text{int} \mathcal{A}$, the optimal production network $\alpha(\omega)$ for a given vector of Domar weights ω satisfies

$$\alpha_i(\omega) - \alpha_i^{\circ} = H_i^{-1} \left(\sum_{j=1}^n \omega_j H_j^{-1} \right)^{-1} \left(\omega - \beta - \sum_{j=1}^n \omega_j \alpha_j^{\circ} \right)$$

for all i, and the associated value function \bar{a} is

$$\bar{a}(\omega) = \frac{1}{2} \sum_{i=1}^{n} \omega_i (\alpha_i(\omega) - \alpha_i^{\circ})^{\top} H_i(\alpha_i(\omega) - \alpha_i^{\circ}).$$

▶ The gradients ∇a_i of the TFP shifter functions are all equal to each other such that

$$\nabla a_i = \nabla a_j$$

for all i, j.

Corollary 2

The efficient Domar weight vector ω^* solves

$$W = \max_{\omega \in \mathcal{O}} \underbrace{\omega^{\top} \mu + \bar{a}(\omega)}_{E[y]} - \frac{1}{2} (\rho - 1) \underbrace{\omega^{\top} \Sigma \omega}_{V[y]}, \tag{15}$$

where $\mathcal{O} = \{ \omega \in R^n_+ : \omega \geq \beta \text{ and } 1 \geq \omega^\top (1 - \bar{\alpha}) \}$ and $\bar{\alpha}(\omega)$ is given by (14).

- ► The set \mathcal{O} contains the vectors ω such that the corresponding production network $\alpha(\omega) \in \mathcal{A}$.
- ▶ The first inequality follows from $\alpha_{ii} \ge 0$ for all i, j.
- ▶ The second inequality, where **1** denotes the $n \times 1$ all-one column vector, follows from $\sum_i \alpha_{ij} \leq \bar{\alpha}_i$ for all i.

Lemma 4

The objective function of the planner's problem (15) is strictly concave. Furthermore, there is a unique vector of Domar weights ω^* that solves that problem, and there is a unique production network $\alpha(\omega^*)$ associated with that solution.

► Therefore, the first-order conditions will characterize the unique unique efficient network.

Proposition 1

There exists a unique equilibrium, and it is efficient.

Taking stock

- There is a unique equilibrium, and it is efficient.
- ► Finding the efficient network reduces to finding the Domar weights associated with the network.
- ► Therefore, finding the equilibrium network reduces to finding the efficient Domar weights.

"Beliefs"

- ▶ Somehow, in the paper, the authors call μ and Σ "beliefs."
- They are just the mean vector and the covariance matrix of the stochastic part of (log) TFP.
- Maybe they refer to how households and producers "perceive" the level and uncertainty of productivity.
- We will look at some of the results in the paper about how beliefs affect equilibrium outcomes.

Impacts of beliefs

- 1. Impacts on Domar weights,
- 2. Impacts on welfare.

Proposition 2

The Domar weight ω_i of sector i is (weakly) increasing in μ_i and (weakly) decreasing in Σ_{ii} .

Risk-adjusted productivity shocks

lacktriangle We define a risk-adjusted version of the productivity vector arepsilon

$$\mathcal{E} = \underbrace{\mu}_{E[\varepsilon]} - \underbrace{(\rho - 1)\Sigma\omega}_{Cov[\varepsilon,\lambda]}.$$

- \blacktriangleright This measures how higher exposure to ε affects the household's utility.
- ▶ Remember that λ denotes the log of the stochastic discount factor Λ .
- Let $\mathbf{1}_i$ be the column vector with a 1 only in the i-th element and zeros otherwise. Then

$$\frac{\partial \mathcal{E}}{\partial \mu_i} = \mu_i,$$

and

$$\frac{\partial \mathcal{E}}{\partial \Sigma_{ii}} = -\frac{1}{2}(\rho - 1)(\omega_{j}\mathbf{1}_{i} + \omega_{i}\mathbf{1}_{j}).$$

Proposition 3

Let γ denote either μ_i or Σ_{ij} . If $\omega \in \text{int}\mathcal{O}$, then

$$\frac{d\omega}{d\gamma} = \underbrace{-\mathcal{H}^{-1}}_{\text{propagation}} \times \underbrace{\frac{\partial \mathcal{E}}{\partial \gamma}}_{\text{impulse}},$$

where the $n \times n$ negative definite matrix \mathcal{H} is given by

$$\mathcal{H} = \nabla^2 \bar{a} + \frac{d\mathcal{E}}{d\omega},$$

and where the matrix $\nabla^2 \bar{a}$ is the Hessian of the aggregate TFP shifter function \bar{a} , and $\frac{d\mathcal{E}}{d\omega} = -\frac{dCov[\varepsilon,\lambda]}{d\omega} = -(\rho-1)\Sigma$ is the Jacobian matrix of the risk adjusted TFP vector \mathcal{E} .

Comments on Proposition 3

- ► The impulse (the 2nd part on the RHS) captures the direct effect on the risk-adjusted TFP.
- ► The propagation (the 1st part on the RHS) captures the global, economy-wide substitution patterns between sectors.
 - \triangleright Contrast it with H_i^{-1} (local, firm-level substitutution).
- ▶ If \mathcal{H}_{ij}^{-1} < 0, i and j are global complements.
 - \triangleright $\mathcal{E}_i \uparrow \Rightarrow \omega_j \uparrow$
- ▶ If $\mathcal{H}_{ij}^{-1} > 0$, *i* and *j* are global substitutes.
 - \triangleright $\mathcal{E}_i \uparrow \Rightarrow \omega_j \downarrow$

What's \mathcal{H} ?

$$\mathcal{H} =
abla^2 ar{a} - \underbrace{(
ho - 1)\Sigma}_{rac{dCov[arepsilon,\lambda]}{d\omega}}$$

Two forces:

- 1. Aggregate TFP shifter function \bar{a}
 - Local substitution patterns in (a_1, \dots, a_n) contribute to global substitution patterns
- 2. Covariance matrix Σ
 - **Suppose that** ω_i increases because of a positive shock in *i*.
 - In response to an increase in ω_i , the planner puts a lower ω_j as Σ_{ii} increases.

$$\frac{\partial \mathcal{H}_{ij}^{-1}}{\partial \Sigma_{ij}} > 0$$

Proposition 5

Let denote γ either μ_i or Σ_{ij} . Under an endogenous network, welfare responds to a marginal change in γ as if the network were fixed at its equilibrium value α^* , that is

$$\frac{d\mathcal{W}(\mu, \Sigma)}{d\gamma} = \frac{\partial W(\alpha^*, \mu, \Sigma)}{\partial \gamma}.$$

How about non-infinitesimal change?

Let $\alpha^*(\mu, \Sigma)$ be the equilibrium production network under (μ, Σ) .

$$\begin{split} &\underbrace{\mathcal{W}(\mu', \Sigma') - \mathcal{W}(\mu, \Sigma)}_{\text{Change in welfare under a flexible network}} \\ \geq &\underbrace{\mathcal{W}(\alpha^*(\mu, \Sigma), \mu', \Sigma') - \mathcal{W}(\alpha^*(\mu, \Sigma), \mu, \Sigma)}_{\text{Change in welfare under a flexible network}}. \end{split}$$

Change in welfare under a fixed network

Corollary 4

The impact of an increase in μ_i on welfare is given by

$$\frac{d\mathcal{W}}{d\mu_i} = \omega_i,$$

and the impact of an increase in Σ_{ij} on welfare is given by

$$\frac{d\mathcal{W}}{d\Sigma_{ij}} = -\frac{1}{2}(\rho - 1)\omega_i\omega_j.$$

► This is a direct result from Corollary 1, Proposition 5, and (13).

References I

- Acemoglu, D. and Azar, P. D. (2020). Endogenous production networks. *Econometrica*, 88(1):33–82.
- Acemoglu, D., Carvalho, V. M., Ozdaglar, A., and Tahbaz-Salehi, A. (2012). The network origins of aggregate fluctuations. *Econometrica*, 80(5):1977–2016.
- Acemoglu, D. and Tahbaz-Salehi, A. (2024). The macroeconomics of supply chain disruptions. *The Review of Economic Studies*, 92(2):656–695.
- Baqaee, D. R. (2018). Cascading failures in production networks. *Econometrica*, 86(5):1819–1838.
- Baqaee, D. R., Burstein, A., Duprez, C., and Farhi, E. (2023). Consumer surplus from suppliers: How big is it and does it matter for growth? Working Paper 31231, National Bureau of Economic Research. Revision May 2025; First circulated June 2022.

References II

- Baqaee, D. R. and Farhi, E. (2019a). The macroeconomic impact of microeconomic shocks: Beyond hulten's theorem. *Econometrica*, 87(4):1155–1203.
- Baqaee, D. R. and Farhi, E. (2019b). Productivity and misallocation in general equilibrium*. *The Quarterly Journal of Economics*, 135(1):105–163.
- Baqaee, D. R. and Farhi, E. (2024). Networks, barriers, and trade. *Econometrica*, 92(2):505–541.
- Bernard, A. B., Moxnes, A., and Saito, Y. U. (2019). Production networks, geography, and firm performance. *Journal of Political Economy*, 127(2):639–688.
- Carvalho, V. M., Nirei, M., Saito, Y. U., and Tahbaz-Salehi, A. (2020). Supply chain disruptions: Evidence from the great east japan earthquake*. *The Quarterly Journal of Economics*, 136(2):1255–1321.

References III

- Dhyne, E., Kikkawa, A. K., Kong, X., Mogstad, M., and Tintelnot, F. (2023). Endogenous production networks with fixed costs. *Journal of International Economics*, 145:103841.
- Dhyne, E., Kikkawa, A. K., and Magerman, G. (2022). Imperfect competition in firm-to-firm trade. *Journal of the European Economic Association*, 20(5):1933–1970.
- Dhyne, E., Kikkawa, A. K., Mogstad, M., and Tintelnot, F. (2020). Trade and domestic production networks. *The Review of Economic Studies*, 88(2):643–668.
- Eaton, J., Kortum, S., and Kramarz, F. (2023). Firm-to-firm trade: Imports, exports, and the labor market. Working paper.
- Grossman, G. M., Helpman, E., and Lhuillier, H. (2023). Supply chain resilience: Should policy promote international diversification or reshoring? *Journal of Political Economy*, 131(12):3462–3496.

References IV

- Grossman, G. M., Helpman, E., and Redding, S. J. (2024a). When tariffs disrupt global supply chains. *American Economic Review*, 114(4):988–1029.
- Grossman, G. M., Helpman, E., and Sabal, A. (2024b). Optimal resilience in multitier supply chains*. *The Quarterly Journal of Economics*, 139(4):2377–2425.
- Hulten, C. R. (1978). Growth accounting with intermediate inputs. *The Review of Economic Studies*, 45(3):511–518.
- Huneeus, F. (2020). Production network dynamics and the propagation of shocks. Working paper.
- Kopytov, A., Mishra, B., Nimark, K., and Taschereau-Dumouchel, M. (2024). Endogenous production networks under supply chain uncertainty. *Econometrica*, 92(5):1621–1659.
- Lim, K. (2018). Endogenous production networks and the business cycle. Working paper.

References V

- Liu, E. (2019). Industrial policies in production networks*. *The Quarterly Journal of Economics*, 134(4):1883–1948.
- Liu, E. and Tsyvinski, A. (2024). A dynamic model of input–output networks. *The Review of Economic Studies*, 91(6):3608–3644.
- Miyauchi, Y. (2024). Matching and agglomeration: Theory and evidence from japanese firm-to-firm trade. *Econometrica*, 92(6):1869–1905.
- Oberfield, E. (2018). A theory of input–output architecture. *Econometrica*, 86(2):559–589.