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Background

▶ Goods and services are produced through supply chains.
▶ Coal is used in steel production; steel is used in truck

production; trucks are used in postal services (sector-to-sector).
▶ Hyundai sells battery packs to Volkswagen; Volkswagen sells

busses to a bus company (firm-to-firm).

▶ How are such production networks formed?
▶ Related questions:1

▶ How does a shock in a particular sector/firm transmit through
production networks?

▶ Anticipating geopolitical risks, how should a country form
supply chain networks with foreign countries?

1These are not addressed in the model we will focus on, though.
2 / 60



Literature (1)

▶ There is a massive and still growing literature on production
networks.

▶ Classic
▶ Hulten (1978)

▶ Sector-to-sector
▶ Baqaee and Farhi (2019a), Baqaee and Farhi (2024), Baqaee

(2018), Baqaee and Farhi (2019b)
▶ Acemoglu and Azar (2020), Acemoglu et al. (2012)
▶ Kopytov et al. (2024): the one we will study here
▶ Liu (2019), Liu and Tsyvinski (2024)
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Literature (2)
▶ Firm-to-firm

▶ Discrete2

▶ Dhyne et al. (2023), Dhyne et al. (2022), Carvalho et al.
(2020)

▶ Continuous3

▶ Lim (2018), Miyauchi (2024), Huneeus (2020), Eaton et al.
(2023)

▶ Empirics
▶ Dhyne et al. (2020), Bernard et al. (2019)4, Baqaee et al.

(2023)

▶ Pure theory (or mainly theory)
▶ Oberfield (2018)5, Acemoglu and Tahbaz-Salehi (2024),

Grossman et al. (2023), Grossman et al. (2024a),6 Grossman
et al. (2024b)

2Only quantitative models listed
3Only quantitative models listed
4Theory and its test
5Can be relabeled as sector-to-sector, though.
6They calibrated their model, but did not use data on firm-to-firm trade.
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Trade-off

▶ Which would you source from?
▶ an expensive, but stable supplier,
▶ a cheap, but unstable supplier.
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Overview of the model

▶ Here we study the model of Kopytov, Mishra, Nimark, and
Taschereau-Dumouchel (2024).

▶ There is one representative firm in each sector.
▶ The representative firm chooses the exponents in its

production function.
▶ To what extent does the firm rely on each sector?

▶ The firm is owned by households. As such, it takes risks into
account.
▶ The intermediate good from this sector enhances my

production, but the productivity of this sector is volatile...

▶ The unique equilibrium is (ex-ante) efficient.

▶ Therefore, we can characterize equilibrium networks and
allocations as a solution to the planner’s problem.

▶ Eventually, the firm’s problem reduces to choosing Domar
weights.
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Setup

▶ There are n sectors, indexed by i ∈ {1, · · · , n}.
▶ Each sector produces a differentiated good.
▶ In each sector, there is a representative firm.

▶ We use sector i , firm i , and product i interchangeably.

▶ Firms face perfect competition. Equilibrium profits are zero.
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Production functions and techniques

▶ Representative firm i has access to a set of production
techniques Ai and chooses only one technique αi ∈ Ai .

▶ The production function of i is

F (αi , Li ,Xi ) = eεiAi (αi )ζ(αi )L
1−

∑n
j=1 αij

i

n∏
j=1

X
αij

ij , (1)

▶ Li is labor inputs,
▶ Xi = (Xi1, · · · ,Xin)

⊤ is a vector of intermediate inputs,
▶ εi is the stochastic component of firm i ’s total factor

productivity,
▶ αi = (αi1, · · · , αin)

⊤ ∈ Ai is a production technique that
determines intermediate input shares and affects total factor
productivity through Ai (αi ),

▶ Ai (αi ) is a productivity shifter,
▶ ζ(αi ) is just a normalization to simplify the cost function.7

7[ζ(αi )]
−1 = (1−

∑n
j=1 αij)

1−
∑n

j=1 αij
∏n

j=1 α
αij

ij .
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Production techniques and intermediate input shares

▶ We define i ’s set of feasible production techniques as

Ai = {αi ∈ [0, 1]n :
n∑

j=1

αij ≤ ᾱi},

where 0 < 1− ᾱi < 1 is the lower bound of the share of labor
(and the upper bound of the sum of the share of intermediate
inputs).

▶ Define A = A1 × · · · × An (a Cartesian product).
▶ α ∈ A is a production network in this economy.
▶ α represents to what extent each sector relies on intermediate

inputs from other sectors.
▶ α can be expressed as a matrix.
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Productivity shifter Ai(αi) (1)
▶ The production technique αi influences i ’s total factor

productivity through Ai (αi ).

▶ The authors’ example: ”beach towels and flowers are not very
useful when making a car, and a technique that relies only on
these inputs would have a low Ai .”

Assumption 1

Ai (αi ) is smooth and strictly log-concave.

▶ I interpret ”smooth” as Ai is differentiable as many times as
we wish.

▶ Let M be a convex subset of Rn. Function f : M → R+ is
strictly log-concave if

f (θx + (1− θ)y) > f (x)θf (y)1−θ,

for any x , y ∈ M and 0 < θ < 1.

▶ Note that then log f is strictly concave if f is strictly positive.
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Productivity shifter Ai(αi) (2)

Why do we need Assumption 1?

1. There exists a unique technique that solves the optimization
problem of the firm.

2. For each sector i , there is a unique vector of ideal input shares
α◦
i that maximizes Ai .
▶ This represents the most productive way to combine

intermediate goods to produce good i .
▶ But, this is not necesarily i ’s technique choice in equilibrium.
▶ Why? Because maximizing Ai is not the same as maximizing

i ’s risk-adjusted expected profits.8

Without loss of generality, normalize Ai (α
◦
i ) for all i .

8This is at the core of this paper. We will see it later.
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Productivity shifter Ai(αi) (3)

Example

One example of a function Ai (αi ) that satisfies Assumption 1 is
the quadratic form

logAi (αi ) =
1

2
(αi − α◦

i )
⊤H̄i (αi − α◦

i ), (2)

where H̄i is a negative-definite matrix that is also the Hessian of
logAi .
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Sectoral productivity shocks εi

▶ Let ε = (ε1, · · · , εn)⊤ be a vector of sectoral productivity
shocks.

▶ We assume that the vector is normally distributed
ε ∼ N (µ,Σ).

▶ µ determines the expected levels of sectoral productivities.

▶ Σ determines uncertainty of individual elements of ε and their
correlations.

▶ ε is the only source of uncertainty in this economy.

▶ Each firm i chooses αi before ε is realized.

▶ A high µi leads to a low unit cost and a low price of good i .

▶ A high Σii leads to a volatile price of good i .

▶ A high Σij leads to more correlated prices of good i and j .

▶ These affect the sourcing decisions of the firms.
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Households (1)

▶ There is one risk-averse representative household in this
economy.

▶ She chooses C = (C1, · · · ,Cn) to maximize

u

((
C1

β1

)β1

× · · · ×
(
Cn

βn

)βn
)
, (3)

where βi > 0 for all i and
∑n

i=1 βi = 1.

▶ We refer to Y =
∏n

i=1(β
−1
i Ci )

βi as aggregate consumption or
GDP.

▶ The utility function u(·) is CRRA with coefficient of relative
risk aversion ρ. That is, (3) is rewritten as

Y 1−ρ

1− ρ
.
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Households (2)

▶ The household makes consumption decisions after uncertainty
is resolved.

▶ In each state of the world, the household faces the budget
constraint

n∑
i=1

PiCi ≤ 1,

where Pi is the price of good i , and the wage is used as a
numeraire.

▶ Firms are owned by the representative household.

▶ Firms maximize expected profits discounted by the
household’s stochastic discount factor

Λ = u′(Y )/P̄, (4)

where P̄ =
∏n

i=1 P
βi
i .
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Households (3)

▶ By solving the household’s optimization, we can show that

y = −β⊤p

where y = logY , β = (β1, · · · , βn)⊤ and p = (p1, · · · , pn)⊤.
▶ For any i , pi = logPi .
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Representative firms’ optimization: two steps

1. The firm decides which production technique to use.
▶ This choice is made before the random productivity vector ε is

realized.

2. The firm chooses labor and intermediate inputs after the
realization of ε.
▶ And the household chooses consumption after the realization

of ε.
▶ That is, the final demand for each good is also determined

after the realization of ε.

We solve these problems backwardly.
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The firm’s second-stage problem

▶ Under a given technique αi , the cost minimization problem of
firm i is

Ki (αi ,P) = min
Li ,Xi

Li +
n∑

j=1

PjXij

 , (5)

subject to
F (αi , Li ,Xi ) ≥ 1.

▶ The solution to this problem implicitly defines the unit cost of
production Ki (αi ,P).

▶ Using the production function (1), the unit cost function is

Ki (αi ,P) =
1

eεiAi (αi )

n∏
j=1

P
αij

j . (6)
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The firm’s first-stage problem

▶ Given an expression for Ki , the first stage of the
representative firm’s problem is to pick a technique αi ∈ Ai to
maximize expected discounted profits

α∗
i ∈ arg max

αi∈Ai

E [ΛQi (Pi − Ki (αi ,P))] . (7)

▶ Qi is the equilibrium demand for good i ,
▶ the profits in different states of the world are weighted by the

household’s stochastic discount factor Λ.

▶ The representative firm takes P, Qi , and Λ as given.

▶ Therefore, this problem reduces to minαi∈Ai
E [ΛQiKi (αi ,P)].

▶ The firm minimizes the weighted expectation of the total cost
QiKi (αi ,P) with the weights being Λ.

▶ The firm inherits the risk attitude of the representative
household.
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Equilibrium prices

▶ In equilibrium, competitive pressure pushes prices to be equal
to unit costs

Pi = Ki (αi ,P) (8)

for all i ∈ {1, · · · , n}.
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Definition 1 (equilibrium)

An equilibrium is a choice of technique α∗ = (α∗
1, · · · , α∗

n) and a
stochastic tuple (P∗,C ∗, L∗,X ∗,Q∗) such that:

1. (optimal technique choice) For each i ∈ {1, · · · , n}, the
technique choice α∗

i ∈ Ai solves (7) given prices P∗, demand
Q∗

i , and the stochastic discount factor Λ∗ given by (4).

2. (Optimal input choice) For each i ∈ {1, · · · , n}, factor
demands per unit of output L∗i /Q

∗
i and X ∗

i /Q
∗
i are a solution

to (5) given prices P∗ and the chosen technique α∗
i .

3. (Consumer maximization) The consumption vector C ∗

maximizes (3).
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Definition 1 (equilibrium): continued

4. (Unit cost pricing) For each i ∈ {1, · · · , n}, P∗
i solves (8)

where Ki (α
∗
i ,P

∗) is given by (6).

5. (Market clearing) For each i ∈ {1, · · · , n},

C ∗
i +

n∑
j=1

X ∗
ji = Q∗

i = Fi (α
∗
i , L

∗
i ,X

∗
i ), and

n∑
i=1

L∗i = 1.
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Comments on Definition 1

▶ Conditions 2-5 correspond to the standard competitive
equilibrium conditions for an economy with a fixed production
network.
▶ Firms and the household optimize in a competitive

environment.
▶ All markets clear given equilibrium prices.

▶ Condition 1 emphasizes that production techniques, and
hence the production network represented by the matrix α∗,
are equilibrium objects.
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How we proceed

▶ Fixed production networks,

▶ Endogenous production networks.
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Two objects: the Leontief inverse and the Domar weight

▶ The Leontief inverse is

L(α) = (I − α)−1 = I + α+ α2 + · · · ,

where

α =

α11 α12 · · · α1n
...

...
. . .

...
αn1 αn2 · · · αnn

 ,
and I is the n × n identity matrix.

▶ Define the Domar weight ωi of sector i as the ratio of its sales
to nominal GDP

ωi =
PiQi

P⊤C
.

▶ The vector of Domar weights ω = (ω1, · · · , ωn)
⊤ satisfies

ω⊤ = β⊤L(α) > 0.
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Lemma 1

Under a given network α, the vector of log prices is given by

p(α) = −L(α)(ε+ a(α)),

and log GDP is given by

y(α) = ω(α)⊤(ε+ a(α)),

where a(α) = (logA1(α1), · · · , logAn(αn))
⊤.

▶ Lemma 1 describes how prices and GDP depend on the
productivity vector ε+ a(α) and the production network α.

▶ An increase in productivity pushes down prices through the
Leontief matrix L(α).

▶ An increase in productivity has a linear and positive effect on
GDP with the coefficient being the Domar weight.
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Mean and variance of GDP

Under a fixed network α,

E [y(α)] = ω(α)⊤(µ+ a(α)) (9)

and
V [y(α)] = ω(α)⊤Σω(α). (10)

27 / 60



Corollary 1

For a fixed production network α, the following hold

1. The impact of a change in expected TFP mui on the
moments of log GDP is given by

∂E [y ]

∂µi
= ωi , and

∂V [y ]

∂µi
= 0.

2. The impact of a change in volatility Σij on the moments of
log GDP is given by

∂E [y ]

∂Σij
= 0, and

∂V [y ]

∂Σij
= ωiωj .

▶ The first part is the Hulten theorem.

▶ For the second part, first think about the case j = i .
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Firm decisions (1)

▶ We have discussed the case of fixed production networks.

▶ Now we move on to endogenous production networks.

▶ Let α∗ be the equilibrium network.

▶ Let λ(α∗) = log Λ(α∗) (the log of the stochastic discount
factor).

▶ Let ki (αi , α
∗) = logKi (αi ,P

∗(α∗)) (the log of the unit cost).

▶ Using these notations, we can reorganize firm i ’s
maximization problem (7) as

α∗
i ∈ arg min

αi∈Ai

E [ki (αi , α
∗)] + Cov [λ(α∗), ki (αi , α

∗)]. (11)

▶ We can rewrite like this because λ(α∗), pi (α
∗), and ki (αi , α

∗)
are normally distributed.

▶ See the supplementary material for details.
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Firm decisions (2)

▶ Taking the expected value of the log of (6), we have

E [ki (αi , α
∗)] = −µi − ai (αi ) +

n∑
j=1

αijE [pj ].

▶ That is, the firm prefers techniques that have high productivity
ai and that rely on inputs that are expected to be cheap.

▶ The second term in (11) captures the importance of aggregate
risk for the firm’s decision.
▶ The firm prefers to have a low unit cost in states of the world

in which the marginal utility of consumption is high.
▶ The economy is in a bad situation.
⇒ Aggregate consumption (GDP) is low.
⇒ The marginal utility is low.
⇒ The firm really wants to have low costs in such a situation.
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Lemma 2

In equilibrium, the technique choice problem of the representative
firm in sector i is

α∗
i ∈ arg max

αi∈Ai

ai (αi )−
n∑

j=1

αijRj(α
∗), (12)

where
R(α∗) = E [p(α∗)] + Cov [p(α∗), λ(α∗)]

is the vector of equilibrium risk-adjusted prices, and where

E [p(α∗)] = −L(α∗)(µ+ a(α∗))

and
Cov [p(α∗), λ(α∗)] = (ρ− 1)L(α∗)Σ[L(α∗)]⊤β.
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Comments on Lemma 2

▶ All the equilibrium information needed for the firm’s problem
is contained in the vector of risk-adjusted prices R.

▶ R quantity provides an overall measure of the desirability of
an input that depends on its expected price and on how its
price covaries with the stochastic discount factor.

▶ Goods that are cheap when aggregate consumption is low are
particularly attractive as inputs, controlling for expected
prices.
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The Hessian matrix of ai

▶ Define Hi by the Hessian matrix of ai

Hi =


∂2ai
∂α2

i1

∂2ai
∂αi1∂αi2

· · · ∂2ai
∂αi1∂αin

∂2ai
∂αi2∂αi1

∂2ai
∂α2

i2
· · · ∂2ai

∂αi2∂αin

...
...

. . .
...

∂2ai
∂αin∂αi1

∂2ai
∂αin∂αi2

· · · ∂2ai
∂α2

in

 .

▶ Taking the first order condition of (12) and applying the
implicit function theorem, we can show that

∂αij

∂Rk
= [H−1

i (αi )]jk ,

where [·]jk denotes the (j , k) element of a matrix.
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Complements vs substitutes: the Hessian matters

▶ Does an increase in k’s risk-adjusted price Rk lead to a
decrease or an increase in the share of another input j ̸= k?

▶ If [H−1
i ]jk > 0, we say j and k are substitutes (for i).

▶ Rk ↑ ⇒ αij ↑
▶ Substituting away from k to j

▶ If [H−1
i ]jk < 0, we say j and k are complements (for i).

▶ Rk ↑ ⇒ αij ↓
▶ If k is too expensive to buy, i doesn’t need j either

▶ One sufficient condition for a Hessian matrix Hi to exhibit
complementarity for all sectors is [Hi ]jk ≥ 0 for all j ̸= k .
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Example: 4 sectors in partial equilibrium

Input 1 Steel

Input 2 Equipment
▶ Milling machines and lathes to transform raw steel into usable

components

Input 3 Carbon fiber
▶ Carbon fiber can replace steel

Sector 4 Car manufacturing

▶ This car manufacturer has a TFP shifter function

a4(α4) =−
4∑

j=1

κj(α4j − α◦
4j)

2 − ψ1(α41 − α42)
2

− ψ2[(α41 + α43)− (α◦
41 + α◦

43)
2].
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Input shares and E [p1]
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Input shares and V [p1]
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Lemma 3

An efficient production network α∗ solves

W := max
α∈A

W (α, µ, σ),

where is a measure of the welfare of the household, and where

W (α, µ, σ) := E [y(α)]− 1

2
(ρ− 1)V [y(α)] (13)

is welfare under a given network α.

▶ The relative risk aversion ρ determines the relative importance
of the expected log GDP E [y(α)] and the variance of the log
GDP V [y(α)].

▶ The welfare depends on only first and second moments of log
GDP. This is because preferences are CRRA and log GDP
(aggregate consumption) is normally distributed.
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Toward Domar weights (1)

▶ Using (9) and (10), we can rewrite the objective function (13)
as

ω⊤µ+ ω⊤a(α)− 1

2
(ρ− 1)ω⊤Σω.

▶ Remember that µ and Σ are exogenous parameters.
▶ So the social planner cannot choose them.

▶ Only endogenous variables are ω and a(α).

▶ Moreover, the only term that does not depend exclusively on
ω is ω⊤a(α).

▶ We want to rewrite this in terms of ω alone.
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Toward Domar weights (2)

▶ Consider the optimization problem

ā(ω) := max
α∈A

ω⊤a(ω), (14)

subject to the definition of the Domar weights given by
ω⊤ = β⊤L(α).

▶ We refer to the value function ā as the aggregate TFP shifter
function.

▶ We denote by α(ω) the solution to (14).

▶ For given ω, ā and α(ω) do not depend on µ or Σ.
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Example
▶ We can explicitly solve for ā and α(ω) under the quadratic

TFP shifter function (2).
▶ At an interior solution α ∈ intA, the optimal production

network α(ω) for a given vector of Domar weights ω satisfies

αi (ω)− α◦
i = H−1

i

 n∑
j=1

ωjH
−1
j

−1ω − β −
n∑

j=1

ωjα
◦
j


for all i , and the associated value function ā is

ā(ω) =
1

2

n∑
i=1

ωi (αi (ω)− α◦
i )

⊤Hi (αi (ω)− α◦
i ).

▶ The gradients ∇ai of the TFP shifter functions are all equal
to each other such that

∇ai = ∇aj

for all i , j .
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Corollary 2

The efficient Domar weight vector ω∗ solves

W = max
ω∈O

ω⊤µ+ ā(ω)︸ ︷︷ ︸
E [y ]

−1

2
(ρ− 1)ω⊤Σω︸ ︷︷ ︸

V [y ]

, (15)

where O = {ω ∈ Rn
+ : ω ≥ β and 1 ≥ ω⊤(1− ᾱ)} and ᾱ(ω) is

given by (14).

▶ The set O contains the vectors ω such that the corresponding
production network α(ω) ∈ A.

▶ The first inequality follows from αij ≥ 0 for all i , j .

▶ The second inequality, where 1 denotes the n × 1 all-one
column vector, follows from

∑
j αij ≤ ᾱi for all i .
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Lemma 4

The objective function of the planner’s problem (15) is strictly
concave. Furthermore, there is a unique vector of Domar weights
ω∗ that solves that problem, and there is a unique production
network α(ω∗) associated with that solution.

▶ Therefore, the first-order conditions will characterize the
unique unique efficient network.
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Proposition 1

There exists a unique equilibrium, and it is efficient.
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Taking stock

▶ There is a unique equilibrium, and it is efficient.

▶ Finding the efficient network reduces to finding the Domar
weights associated with the network.

▶ Therefore, finding the equilibrium network reduces to finding
the efficient Domar weights.
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”Beliefs”

▶ Somehow, in the paper, the authors call µ and Σ ”beliefs.”

▶ They are just the mean vector and the covariance matrix of
the stochastic part of (log) TFP.

▶ Maybe they refer to how households and producers ”perceive”
the level and uncertainty of productivity.

▶ We will look at some of the results in the paper about how
beliefs affect equilibrium outcomes.
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Impacts of beliefs

1. Impacts on Domar weights,

2. Impacts on welfare.
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Proposition 2

The Domar weight ωi of sector i is (weakly) increasing in µi and
(weakly) decreasing in Σii .
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Risk-adjusted productivity shocks
▶ We define a risk-adjusted version of the productivity vector ε

E = µ︸︷︷︸
E [ε]

− (ρ− 1)Σω︸ ︷︷ ︸
Cov [ε,λ]

.

▶ This measures how higher exposure to ε affects the
household’s utility.

▶ Remember that λ denotes the log of the stochastic discount
factor Λ.

▶ Let 1i be the column vector with a 1 only in the i-th element
and zeros otherwise. Then

∂E
∂µi

= µi ,

and
∂E
∂Σij

= −1

2
(ρ− 1)(ωj1i + ωi1j).
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Proposition 3

Let γ denote either µi or Σij . If ω ∈ intO, then

dω

dγ
= −H−1︸ ︷︷ ︸

propagation

× ∂E
∂γ︸︷︷︸

impulse

,

where the n × n negative definite matrix H is given by

H = ∇2ā+
dE
dω

,

and where the matrix ∇2ā is the Hessian of the aggregate TFP
shifter function ā, and dE

dω = −dCov [ε,λ]
dω = −(ρ− 1)Σ is the

Jacobian matrix of the risk adjusted TFP vector E .
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Comments on Proposition 3

▶ The impulse (the 2nd part on the RHS) captures the direct
effect on the risk-adjusted TFP.

▶ The propagation (the 1st part on the RHS) captures the
global, economy-wide substitution patterns between sectors.
▶ Contrast it with H−1

i (local, firm-level substitutution).

▶ If H−1
ij < 0, i and j are global complements.

▶ Ei ↑ ⇒ ωj ↑
▶ If H−1

ij > 0, i and j are global substitutes.
▶ Ei ↑ ⇒ ωj ↓
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What’s H?

H = ∇2ā− (ρ− 1)Σ︸ ︷︷ ︸
dCov [ε,λ]

dω

Two forces:

1. Aggregate TFP shifter function ā
▶ Local substitution patterns in (a1, · · · , an) contribute to global

substitution patterns

2. Covariance matrix Σ
▶ Suppose that ωi increases because of a positive shock in i .
▶ In response to an increase in ωi , the planner puts a lower ωj as

Σij increases.

∂H−1
ij

∂Σij
> 0
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Proposition 5

Let denote γ either µi or Σij . Under an endogenous network,
welfare responds to a marginal change in γ as if the network were
fixed at its equilibrium value α∗, that is

dW(µ,Σ)

dγ
=
∂W (α∗, µ,Σ)

∂γ
.
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How about non-infinitesimal change?

▶ Let α∗(µ,Σ) be the equilibrium production network under
(µ,Σ).

W(µ′,Σ′)−W(µ,Σ)︸ ︷︷ ︸
Change in welfare under a flexible network

≥W (α∗(µ,Σ), µ′,Σ′)−W (α∗(µ,Σ), µ,Σ)︸ ︷︷ ︸
Change in welfare under a fixed network

.
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Corollary 4

The impact of an increase in µi on welfare is given by

dW
dµi

= ωi ,

and the impact of an increase in Σij on welfare is given by

dW
dΣij

= −1

2
(ρ− 1)ωiωj .

▶ This is a direct result from Corollary 1, Proposition 5, and
(13).
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