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1 The Dornbusch-Fischer-Samuelson model

Figure 1: Comparative statics with respect to A
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Recall that the equilibrium relative wage @ and the equilibrium cutoff (of goods) z are characterized as the
intersection of the downward-sloping A curve and the upward-sloping B curve. B doesn’t change throughout
this exercise.

Initially, the relative unit labor requirement A is A; = 2 — z. Now suppose that this shifts up to A2 =3 — z.
Remember that A(z) = a*(z)/a(z), where a*(z) and a*(z) are Foreign and Home’s unit labor requirement to
produce good z, respectively. Therefore, for all goods, Foreign becomes less productive. Then the cutoff shifts
from z! to z2. Recall that the cutoff z is such that Home produces goods [0, z] and Foreign produces goods [z, 1].
Therefore, because of this shift of relative unit labor requirement, Home produces a wider range of goods and
Foreign produces a narrower range of goods. Accordingly, the relative wage between Home and Foreign increases
from w' to w?. In short, Home becomes productive uniformly for all goods; Home becomes an exporter of a
wider range of goods; and the wage ratio between Home and Foreign increases.

Now the relative unit labor requirement rotates clockwise from A; to As. For any z € (0, 1], the relative

unit labor requirement decreases. This means that for all goods except good 0, Home becomes relatively less



productive. Therefore, the cutoff decreases from z' to z3. In short, Home becomes less productive for almost all
goods; Home becomes an importer of a wider range of goods; and the relative wage between Home and Foreign

decreases.

2 Computing the Eaton-Kortum model

2.1 Comparative statics with respect to 7}

1. See Figure 2.

Figure 2: Q2.1.1
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2. See Figure 3.

2.2 Comparative statics with respect to di; = do;

1. See Figure 4.
2. See Figure 5.

3. See Figure 6.



Figure 3: Q2.1.2

3.8

3.6

3.2 +

1.6 1.8 2.0 2.2 2.4

Figure 4: Q2.2.1
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Figure 5: Q2.2.2

1.6 1.8 2.0 2.2 2.4

Figure 6: Q2.2.3
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3 The Melitz-Chaney model

1. The firm’s profit-maximization problem is
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The first-order condition with respect to p;;(¢) is
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Rearranging this, we have
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Solving this for p;;(¢),
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Since 0; > 0 — 1, we have 0 — 0; — 1 < 0. Of course we hace —0; < 0. Therefore, we have
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Substituting ¢; = ol into this,
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The first term in the square bracket is
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The second term in the square bracket is
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Then the right-hand side of (1) is
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4 Production networks

1. The cost minimization problem is
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Set up the Lagrangian
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The first-order conditions are

3C - £ _ZT'L: Qg a Qg4
aLi =1+A[1-— Zaij & ZA,(O&,)C(CVZ)LZ =ty HXij] = 07 (3)
j=1 J=1
oL . 1=370 0 iy Q! a;—1
ox,, ~ D T rage Ailea)C(aa) Ly T ST x| X =0 (4)
3'#5



forany j =1,...,n, and
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Rearranging (3) and (4) and taking the ratio of these two yields
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Solving this for Xj;,

for any j. Substituting this into (5) yields
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Using the definition of ((«a;) (See p.8 of 7_production_network.pdf.),
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These are the cost-minimizing labor/intermediate inputs. Plugging (7) & (8) into the objective function
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. To compute the Hessian, first we compute the first derivatives.
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The off-diagonal elements are -1/6. Inputs 1 and 2 are complements for sector 2.

Therefore, the Hessian is

Its inverse matrix is
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